H₂ FROM H₂O
A market assessment for a catalyst technology that produces hydrogen from water

C2M Analysis Team
Alden Woodrow, MBA 2012
Hannah Murnen, Ph.D 2012
Ivor Castelino, MBA 2011
Kyle Sandburg, MBA 2011

May 2011
THE HYDROGEN CATALYST TEAM

Alden Woodrow MBA 2012
- Energy & Cleantech Finance focus
- Environmental Strategy Consultant

Hannah Murnen Ph.D 2012
- Sustainable Materials focus
- Materials Self Assembly Researcher

Ivor Castelino MBA 2011
- Energy & Cleantech Sales focus
- Technology Consultant

Kyle Sandburg MBA 2011
- Sustainable Product Development focus
- Technology & Sustainability Consultant

Scientist Sponsors
- Jeffrey Long, PhD
- Christopher Chang, PhD

Academic Advisors
- Beverly Alexander
- Dariush Rafinejad, PhD
- Ryan Hanley
- Brooks Kincaid
OBJECTIVE:
ANALYZE THE MARKET POTENTIAL FOR A HYDROGEN GENERATING CATALYST AND RECOMMEND A PATH TO MARKET
WHAT HAS LIMITED THE ADOPTION OF CLEAN HYDROGEN?

The hydrogen landscape

- Overview
- Production
- Use
- Distribution

Our technology

Path to market
HYDROGEN IS EVERYWHERE

– The most abundant chemical element on earth
– Requires transformation to isolate hydrogen gas

– Energy source and chemical constituent
– Clean burning, future of energy?
HYDROGEN IS MAINLY PRODUCED FROM FOSSIL SOURCES...

U.S. PRODUCTION
(bil kg/year)

- Electrolysis: 0.3 bil kg/year, ~$4/kg
- (SMR) Steam methane reforming: 6.9 bil kg/year, ~$1/kg

...AND MAINLY USED IN OIL AND CHEMICAL PRODUCTION

U.S. PRODUCTION

- Electrolysis 0.3
- (SMR) Steam methane reformation 6.9

U.S. USE

(bil kg/year)

- Other 0.2
- Chemicals 2.4
- Refining 4.6
- Metals
- Aerospace
- Electronics
- Other
- Light FCVs
- Heavy FCVs
- Utilities
- Stationary fuel cells
- Food
- Refining
- H2 reformation
- Steam methanation
- Chemicals
- Other

Sources: 2008 National Hydrogen Association, US Department of Energy
HYDROGEN IS EXPENSIVE TO DISTRIBUTE AT LOW VOLUMES

Sources: Air Products Diagram, EPRI Briefing to DOE, National Academies Press (assuming gas at 60 degrees F and 1 atmosphere)
CLEAN HYDROGEN HAS NOT MET EXPECTATIONS BUT CAN BE COMPETITIVE

Electrolysis has not replaced carbon-intensive SMR

High costs and limited infrastructure are barriers to adoption

Opportunity at small distributed scale where willingness to pay is high
LBNL CATALYST LOWERS ELECTROLYSIS COST

- Electrolysis
- A new catalyst
- Cost advantage
ELECTROLYSIS SPLITS WATER INTO HYDROGEN AND OXYGEN

\[4\text{H}_2\text{O} + 4\text{e}^- \rightarrow 2\text{H}_2 + 4\text{OH}^- \]

\[2\text{H}_2\text{O} - 4\text{e}^- \rightarrow \text{O}_2 + 4\text{H}^+ \]

Catalyst

Cathode

Anode

Power supply 1.23 V
CATALYST IS MAJORITY OF ELECTROLYZER CAPITAL COST

Electrolyzer capital cost breakdown

- Catalyst: 77%
- Membrane: 5%
- JDL: 5%
- Bipolar Plate: 3%
- Seal: 6%
- Balance of System: 2%
- Assembly: 2%

Sources: REVIEW OF SMALL STATIONARY REFORMERS FOR HYDROGEN PRODUCTION (Dr. Joan M. Ogden); NREL Electrolyzer Capital Cost study
LBNL CATALYST HAS SIGNIFICANT ADVANTAGES OVER PLATINUM

<table>
<thead>
<tr>
<th></th>
<th>MolyOxo catalyst</th>
<th>Standard catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material cost</td>
<td>$1/oz</td>
<td>$1800/oz</td>
</tr>
<tr>
<td>Water quality</td>
<td>No treatment</td>
<td>Treatment</td>
</tr>
<tr>
<td>Durability</td>
<td>Robust</td>
<td>Easily fouled</td>
</tr>
<tr>
<td>Energy Conversion</td>
<td>~50%</td>
<td>~65%</td>
</tr>
</tbody>
</table>

Source: Nature May 2010
IMPACT OF CAPITAL COST REDUCTION GREATEST AT SMALL SCALE

H2 production levelized cost ($/kg) using grid electrolysis

<table>
<thead>
<tr>
<th>Capital cost</th>
<th>66%</th>
<th>53%</th>
<th>35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$/kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 kg/day</td>
<td>$18.43</td>
<td>$10.31</td>
<td>$6.83</td>
</tr>
<tr>
<td>100 kg/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 kg/day</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: NREL Electrolyzer Capital Cost study

UC Berkeley: Cleantech to Market - Confidential
LBNL CATALYST MAKES ELECTROLYSIS COMPETITIVE AT SMALL SCALE

Capital Cost Comparison (SMR Vs Electrolyzer)

Sources: Review of Small Stationary Reformers for Hydrogen Production (Dr. Joan M. Ogden); NREL Electrolyzer Capital Cost study
REDUCTION IN CATALYST VOLTAGE INPUT HAS LARGEST IMPACT ON COST OF PRODUCED H2

Baseline Cost ($18.43)

Voltage input (0.5V to 1.5V)

Cost of electricity (+/- 30%)

Catalyst cost reduction (-90% to -25%)

Source: C2M Team Analysis based on electrolysis cell potential
HOW SHOULD THE LBNL CATALYST BE BROUGHT TO MARKET?

The hydrogen landscape Our technology Path to market

- Application fit
- Competition
- Optimal business model
- Performance targets
SMALL SCALE APPLICATIONS OFFER GREATEST OPPORTUNITY

Insight

- Large decrease in capital cost
- SMR has strong cost advantages at large scale
- Feed stock electricity costs drive economics

Market Criteria

- Markets where capital cost is high percent of overall cost
- Niche markets where electrolysis has advantage
- Markets with access to cheap electricity
LBNL CATALYST ALIGNS BEST WITH FOUR APPLICATIONS

Framework Criteria
- Barriers to entry
- Switching costs
- Substitution/competition
- Volume usage
- Market size/potential

Best Fit Applications
- Distributed small scale energy generation
- Power generator coolant
- On-board ICE hydrogen booster
- Oxygen concentrator

Applications:
- Ammonia Production
- Oil Refining
- Semiconductors
- Metal Fabrication
- Hydrogen Peroxide
- Food & Bev
- Commercial Marine
- Yachting
- Float Glass
- Medical Drugs
- Fuel Cell Vehicles
- Grid Storage
CASE STUDY: POWER PLANT COOLING

Hydrogen gas circulates within thermal generators to remove heat from windings

Strengths

+ Access to low cost electricity
+ Volume output alignment
+ Exceeds payback criteria
+ Growth in Asia energy demand
+ Thermal conductivity properties

Limitations

– Switching costs
– Best with coal and natural gas
– Limited benefits of being ‘green’

Market Details

- **H₂ Market Size:** 2011: 25M 2020: $100M
- **Avg. H₂ Purchase Price:** $50/kg H₂
- **Key buyers:** Large utilities, Independent Power Producers
- **Potential partners:** GE, Siemens, ABB

Sources: 1 – Cost Model (Assumed $200k per plant, 30% of plants, and 30% of electrolyzer), Google Images, GE Energy
ADDRESSABLE MARKET SIZE TO GROW FROM $400M TODAY TO $32B IN 2020

- Energy Source: Fuel Cell Vehicles
- Energy Source: Telecom
- Energy Source: Mobile Military
- Energy Source: Materials Handling
- Hydrogen ICE booster
- Oxygen Concentrator
- Power Plant Cooling

Total addressable market size (in USD millions)

Source: C2M Team Analysis based on various market potentials
NEW CATALYSTS ARE STARTING TO TRANSFORM ELECTROLYSIS MARKET

Sources: Freedonia, Proton Energy Systems, Johnson Matthey, Google Images
MOST ATTRACTIVE BUSINESS MODELS ARE TO LICENSE OR PRODUCE THE CATALYST

<table>
<thead>
<tr>
<th></th>
<th>Addressable market</th>
<th>Cost of entry</th>
<th>Value of technology</th>
<th>Expertise/ability to produce</th>
<th>Time to Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produce H2</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Produce electrolyzers</td>
<td>☻</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
</tr>
<tr>
<td>Produce catalyst</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
</tr>
<tr>
<td>License to electrolyzer manufacturer</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
</tr>
<tr>
<td>License to catalyst producer</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
<td>☾</td>
</tr>
</tbody>
</table>
EMERGING FORCES WOULD RAPIDLY CHANGE THE ADOPTION OF ELECTROLYSIS

Low cost intermittent renewable sources

Large scale production of fuel cell vehicles

Global prices for GHG emissions

Sources: Google Images
FURTHER RESEARCH WILL IMPROVE COMMERCIAL POTENTIAL

• Basic research
 – Reduce thermodynamic over potential
 – Research impacts of direct solar energy

• Applied research
 – Develop a complete electrolysis cell
 – Research the use of the catalyst for fuel cells

• Prototype
 – Expand beyond lab scale

Sources: Google Images
LOW COST CATALYST CREATES VALUE FOR SMALL SCALE DISTRIBUTED HYDROGEN GENERATION

The hydrogen landscape
Cost & infrastructure barriers have limited electrolysis adoption

Our technology
Lower capital cost catalyst = small scale advantage

Path to market
License or produce catalyst for growing markets
QUESTIONS & ANSWERS
HOW DID YOU GET TO UC-BERKELEY TODAY?

- “'Hydrogen Highway' Plans Riding on Misconceptions” – 2003
- Governor Schwarzenegger signs executive order to construct hydrogen highway – Apr. 2004
- “Has Schwarzenegger's hydrogen highway gone bust?” – 2009

Sources: CNN, Scientific American, LA Times, EXECUTIVE ORDER 5-7-04
HOW DOES LBNL CATALYST FARE AGAINST PLATINUM ON A $/KG OF PRODUCED HYDROGEN BASIS?

- Pt Catalyst: $19.64
- LNBL Catalyst: $18.43

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Pt Catalyst</th>
<th>LNBL Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed O&M</td>
<td>$4.00</td>
<td>$2.00</td>
</tr>
<tr>
<td>Electricity Costs</td>
<td>$6.00</td>
<td>$4.00</td>
</tr>
<tr>
<td>Capital Costs</td>
<td>$9.00</td>
<td>$12.00</td>
</tr>
</tbody>
</table>
PRIORITY APPLICATIONS

<table>
<thead>
<tr>
<th>Application</th>
<th>Benefits/Sub-steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Plant Cooling</td>
<td>- Access to low cost electricity</td>
</tr>
<tr>
<td></td>
<td>- Low volume demands</td>
</tr>
<tr>
<td></td>
<td>- Currently customers pay > $40/kg for delivered H2</td>
</tr>
<tr>
<td>Hydrogen booster for diesel engines</td>
<td>- Increased mileage by 15-20%</td>
</tr>
<tr>
<td></td>
<td>- No substitute technology</td>
</tr>
<tr>
<td></td>
<td>- Relatively inexpensive retrofits required</td>
</tr>
<tr>
<td>Materials Handling (Forklifts)</td>
<td>- Large addressable market (>1 billion)</td>
</tr>
<tr>
<td></td>
<td>- Adoption of Fuel cell powered forklifts has increased in last 2 years</td>
</tr>
<tr>
<td>Military (Mobile)</td>
<td>- Large market open to trying new technologies</td>
</tr>
<tr>
<td></td>
<td>- Unique needs unmet by other technologies (Weight of battery pack, noise factor)</td>
</tr>
<tr>
<td>Telecom</td>
<td>- Very large market that has severe power disruption issues in developing regions (70% of towers have diesel gensets)</td>
</tr>
<tr>
<td></td>
<td>- Fuel Cells and other renewables starting to become more pervasive</td>
</tr>
<tr>
<td></td>
<td>- Easier to transport water than fossil fuels</td>
</tr>
<tr>
<td>Refueling stations for Fuel Cell Vehicles</td>
<td>- Need for H2 refueling infrastructure to support penetration of FCVs</td>
</tr>
<tr>
<td></td>
<td>- Lack of competition in small scale home refueling systems</td>
</tr>
</tbody>
</table>
CASE STUDY: FCV HOME REFUELING

Hydrogen gas produced to refuel personal fuel cell vehicle

Strengths

+ Large potential market
+ EV stations priming market
+ Expansion in home PV systems
+ Limited set of buyers

Limitations

– No market today
– Could increase cost of ownership
– Buyers have lots of leverage

Market Details

- **H₂ Market Size**: 2011: 0M 2020: $XM
- **Avg. H₂ Purchase Price**: $50/kg H₂
- **Key buyers**: Auto Manufacturers
- **Potential partners**: Utilities, Smart Grid technology companies

Source> Google Images
CASE STUDY: OXYGEN CONCENTRATOR

Oxygen is used for medical support and hydrogen is used to power distribution

Strengths

+ High growth market
+ Uses both H₂ and O₂ output
+ Low-cost catalyst needed to change dynamics
+ Size (produce 5-10 Liters of O₂)

Limitations

– Must compete with PSA on cost
– Limited electrolysis solutions
– Must receive FDA approval

Market Details

- **Market Size:** 2011: $380M 2020: $2,000M
- **Avg. Equipment Price:** $800
- **Key buyers:** Medical supply; Equipment
- **Potential partners:** Hospitals, Insurance

Source> Google Images, Oxygen Concentrator market WinterGreen Research
EQUIPMENT MANUFACTURERS AND CATALYST PRODUCERS SHARE COMMON MARKET ENTRY

Factors of Competition

<table>
<thead>
<tr>
<th>Factors of Competition</th>
<th>Hydrogen Gas</th>
<th>Electrolyzer Equipment</th>
<th>Catalyst Producer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Size</td>
<td>Positive</td>
<td>Neutral</td>
<td>Negative</td>
</tr>
<tr>
<td>Lifecycle Stage</td>
<td>Neutral</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Market share concentration</td>
<td>Positive</td>
<td>Neutral</td>
<td>Positive</td>
</tr>
<tr>
<td>Capital Intensity</td>
<td>Negative</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>Cost Structure</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>Average</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
</tbody>
</table>

Attractiveness

- **Positive**
- **Neutral**
- **Negative**
EXTERNAL FORCES MAINTAIN INDUSTRY STATUS QUO

High impact

- Low natural gas prices
- US Shifts Focus Away From Hydrogen
- Japan Nuclear Explosion
- Clean Energy Investment
- Carbon Markets
- Climate Change Support
- BP Gulf Oil Spill

Low Impact

- Petroleum Price Volatility
- International Government Support

Negative Influence

Neutral Influence

Positive Influence