Smaller/Lighter, More Efficient, More Powerful Motors

December 5, 2014
2.2 Billion Motors
Magnetic cores are an essential component of motors.

Silicon Steel

Stator (electromagnet)

Unstack

Remove wire: core magnetic material
MANCs can be easily integrated into existing motors

MANCs Ribbon

Stamp → Stack → Wind → Drop → Motor

MANCs Ribbon
MANCs transcend traditional tradeoffs

Limitation of conventional materials

Magnetic Amorphous Nanocomposite (MANC)

More Efficient

Permeability (H/m^2)

Magnetic flux density (T)

Magnet Strength
Today’s magnetic cores are limited by heat losses

Electrical Power In

Silicon Steel

Heat = Lower Efficiency

Mechanical Power Out
Today’s magnetic cores are limited by heat losses.

- Electrical Power In
- Mechanical Power Out
- Silicon Steel
- Heat = Lower Efficiency
Motors have three main engineering levers:

- **Size**
- **Power**
- **Losses**
1) MANCs enable energy efficient motors

7% More Efficient
2) MANCs enable more powerful motors

>5X More Power
3) MANCs enable smaller and lighter motors

- 70% Smaller
- Power
- Losses
- Size

70% Smaller
More efficient, stronger, and/or smaller/lighter motors
Our MANCs will *enhance* today’s motors through greater efficiency.
Motors are ubiquitous; many are industrial

230 MM industrial size motors globally

By application:
- Compressor: 32%
- Pumps: 19%
- Mechanical: 30%
- Fans: 19%
Industrial motor inefficiency is an enormous challenge

- Global electricity demand by end use
- Electric motor electricity demand by sector

- Others
- Motors 46%

- Non-Industrial
- Industrial 64%

30% of global electricity demand
Industrial motor inefficiency is an enormous challenge

Global Electricity Consumption: 2.5% annually

Shift in market share of electric motor efficiency classes

Shift in market share of electric motor efficiency classes

Slow progress for adoption of premium efficiency (IE3) electric motors
MANC-enhanced motors will close the efficiency gap

Efficiency scale

90% 96% 100%

10% Inefficiency gap

Silicon Steel

MANCs

Annual Cost Reduction

$34 BN

Annual CO₂ Emission Reduction

360 MM tons
Trends in the industrial motor market are favorable for MANC-enabled motors

- **Market**: Steady industrial growth worldwide
- **Competitors**: Siemens
- **Regulations**: U.S. Department of Energy
- **Other**: Hitachi

Premium
Our MANCs will *enable* tomorrow’s motors through greater efficiency, more power and reduced size.
EV adoption has come a long way but still has further to go.
EV adoption has come a long way but still has further to go.

Source: Goldman Sachs, company filings, website, and Wall Street research.

Note: Geographic expansion is an illustrative representation. Each dot represents 50 vehicles sold.
EV adoption has come a long way but still has further to go.

- Source: Goldman Sachs, company filings, website, and Wall Street research
- Note: Geographic expansion is an illustrative representation. Each dot represents 50 vehicles sold.
EV adoption has come a long way but still has further to go

- Source: Goldman Sachs, company filings, website, and Wall Street research
- Note: Geographic expansion is an illustrative representation. Each dot represents 50 vehicles sold.
EV adoption has come a long way but still has further to go

- Source: Goldman Sachs, company filings, website, and Wall Street research
- Note: Geographic expansion is an illustrative representation. Each dot represents 50 vehicles sold.
EV adoption has come a long way but still has further to go

- Source: Goldman Sachs, company filings, website, and Wall Street research
- Note: Geographic expansion is an illustrative representation. Each dot represents 50 vehicles sold.
EV adoption has come a long way but still has further to go

- Source: Goldman Sachs, company filings, website, and Wall Street research
- Note: Geographic expansion is an illustrative representation. Each dot represents 50 vehicles sold.
EV adoption has come a long way but still has further to go

• Source: Goldman Sachs, company filings, website, and Wall Street research
• Note: Geographic expansion is an illustrative representation. Each dot represents 50 vehicles sold.
EV adoption has come a long way but still has further to go

- Source: Goldman Sachs, company filings, website, and Wall Street research
- Note: Geographic expansion is an illustrative representation. Each dot represents 50 vehicles sold.
One of the largest barriers remains limited range
Everyone’s focusing on the battery
Imagine the motor was replaced by one that was more efficient and smaller.
A more efficient, lighter MANC-enabled motor can extend vehicle range

80km

25%

100km
Our MANCs will *enable* tomorrow’s motors through greater efficiency, more power, and less size

An electric revolution in the air – Safran Magazine

Electric aircraft take off, as Europe leads the way – Engineering & Technology Magazine
Airplanes have a lot of moving parts, but only a few are electric.
Aircraft electrification is happening now, in the commercial…
… and the military spaces
Power density remains critical to pushing this trend forward

![Horsepower per pound graph](image)

- Current electric motors
- Jet engine requirements
Power density remains critical to pushing this trend forward

Horsepower per pound

- **Current electric motors**
- **Jet engine requirements**
MANCs enable progress toward electrification
Enabling electrification leads to valuable outcomes

- Reduce fuel use
- Reduce emissions
- Increase range
- Save money
- Save lives

Electrification using MANCs

Reduce weight
There are many promising apps. How do we select and develop the initial killer app?
We possess existing capabilities to serve these markets

Capable Team

- **Carnegie Mellon University**
- **Industry Experience:** 45 years
- **Patents:** 2
- **Grants Received:** 3 NSF, 1 ARPA-E
- **Journal Articles:** 250+

Incorporated Entity

- **South Pole Magnetics (SPM)**
- **Founded:** 2014
- **HQ:** Pittsburgh, PA
- **Industry:** Fabricated Metal Product Manufacturing

Production Capabilities

- **Equipment:** Castors
- **Capacity:** 250kg, 5kg
- **Production Capabilities:** 4” and 2” ribbons
We possess existing capabilities to serve these markets

Significant Funding

Over 10 years

$\sim 4\text{mm}$

Established IP & Prototype

- 2 Content of Matter Patents
- 1 Operational Prototype

Key Partners

Prototype Design

- Los Alamos National Laboratory
 Established 1943
- GTM Plans
 - University of Pittsburgh
 - UC Berkeley
SPM: From Lab to Market

Phase I
Secure Funding (~$500k)

Phase II
Develop Partnership for Prototype

Phase III
Determine Killer App
Paths to funding face different advantages and open questions

Venture Capital
- Validation, network, mentorship
- Difficult to secure
- Ownership dilution

Public Funding
- Non-dilutive
- Long process
- Follow-on funding

Strategic Corporate
- Validation, network, mentorship
- Follow-on funding
- Customers
- Ownership dilution
SPM’s initial killer app will be driven by funding strategy and partner needs.
With a differentiated product, an array of potential apps, and a viable GTM strategy …
SPM is poised to become the platform to accelerate the electrification of motors
UC Berkeley Team

Becky Xilu Li
MPP Candidate

Chad Reed
MBA Candidate

Paul Hogan
MBA Candidate

Alex Chun
MBA Candidate

Danny Hellebusch
PhD Candidate

David Liu
MBA Candidate
We offer the performance of MANCs and the durability of Si-Fe

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Advanced</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silicon Iron (Si-Fe)</td>
<td>Ferrites</td>
<td>Amorphous</td>
</tr>
<tr>
<td>Saturation (T)</td>
<td>2.0</td>
<td>0.25-0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Permeability (10^3)</td>
<td>10-50</td>
<td>0.01-10</td>
<td>50</td>
</tr>
<tr>
<td>Coercivity (A/m)</td>
<td>6</td>
<td>10-1600</td>
<td>3.5</td>
</tr>
<tr>
<td>Brittleness</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Curie Temperature (degC)</td>
<td>745</td>
<td>120-500</td>
<td>415</td>
</tr>
<tr>
<td>AC Power loss density (W/kg)</td>
<td>0.84</td>
<td>N/A</td>
<td>0.66</td>
</tr>
<tr>
<td>Power conversion density (W/kg)</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
</tr>
</tbody>
</table>
Experimental motors made by others gives us a baseline for performance

EV Motor Prototype (Light Engineering)

<table>
<thead>
<tr>
<th></th>
<th>Industry</th>
<th>LE Prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>25 kw ACPM</td>
<td>M32L2-ACPM</td>
</tr>
<tr>
<td>Motor Weight</td>
<td>163kg</td>
<td>42kg</td>
</tr>
<tr>
<td>Motor Efficiency</td>
<td>88%</td>
<td>95%</td>
</tr>
<tr>
<td>Cargo Capacity</td>
<td>1000kg</td>
<td>1500kg</td>
</tr>
<tr>
<td>Range</td>
<td>80 km @ 40 kph max</td>
<td>100 km @ 70 kph max</td>
</tr>
<tr>
<td>Grade Ability</td>
<td>8%</td>
<td>30%</td>
</tr>
</tbody>
</table>
We believe we can make a motor with the same output at ~25% the weight and volume

<table>
<thead>
<tr>
<th></th>
<th>MANCs (Projected)</th>
<th>Silicon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Output (kW)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Rated Torque (Nm)</td>
<td>200</td>
<td>136</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>48</td>
<td>160</td>
</tr>
<tr>
<td>Volume (L)</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>Power Density (kw/L)</td>
<td>4.717</td>
<td>0.82</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>95</td>
<td>94.90</td>
</tr>
</tbody>
</table>