Asymmetric Information in Residential Rental Markets: Implications for the Energy Efficiency Gap

Erica Myers
Revised September 2015
Asymmetric Information in Residential Rental Markets: Implications for the Energy Efficiency Gap

Erica Myers*

September 15, 2015

Abstract

This paper explores whether energy cost information asymmetries exist between landlords and tenants by exploiting variation in which party pays for energy. In a search market context, the effect of energy cost changes on tenant turnover, rents, and efficiency investment should differ between the two payment regimes under asymmetric information but not symmetric information. Using energy cost variation in the form of changes in relative heating fuel prices, I find evidence that tenants are uninformed about energy costs. This results in higher energy expenditures for tenants and implies that information campaigns or efficiency standards may improve market outcomes.

Keywords: Asymmetric Information, Landlord-Tenant Problem, Efficiency Gap

JEL Codes: D13, D82, Q41, R31

*Assistant Professor, Department of Agricultural and Consumer Economics, University of Illinois. Email: ecmyers@illinois.edu. I am grateful to Severin Borenstein, Maximilian Auffhammer, Meredith Fowlie, and Catherine Wolfram for their invaluable advice, and to Michael Anderson, Patrick Baylis, Joshua Blonz, Judson Boomhower, Benjamin Crost, Lucas Davis, Walter Graf, Kelsey Jack, Shaun McRae, Karen Notsund, Louis Preonas, Sofia Berto Villas-Boas, Reed Walker, and Matthew Zaragoza-Watkins and seminar participants at Camp Resources and UC Berkeley for many helpful comments. Financial support from the Joseph L. Fisher Doctoral Dissertation Fellowship by Resources for the Future and from the Fisher Center for Real Estate & Urban Economics PhD Fellowship is gratefully acknowledged.
1 Introduction

Energy efficiency improvements are potentially one of the most cost effective ways to reduce greenhouse gas emissions. Recent engineering estimates have routinely projected that there are opportunities for significant savings from energy efficiency investments that would pay for themselves in a short period based on private returns alone (e.g. McKinsey & Company, 2009). Attracted by these savings, governments around the world have invested billions of dollars in energy efficiency as a way to reduce greenhouse gas emissions and save consumers money on energy. For example, the American Recovery and Reinvestment Act (ARRA) appropriated $97 billion to energy-related funding, $32 billion of which went to energy efficiency and retrofits (U.S. Congressional Budget Office 2009). In 2013, U.S. electric utilities spent almost $7 billion on efficiency programs, a number that is expected to double in the next decade (Barbose et. al 2013). In addition, the EPA’s proposed Clean Power Plan, the first national program designed to reduce U.S. greenhouse gas emissions, is projected to meet a significant share of its reductions by 2030 from low-cost energy efficiency improvements (ICF, 2014). The success of these programs in combating climate change depends crucially on the ability to harness energy efficiency savings in a cost effective way.

Importantly, many energy efficiency investments with high estimated private returns are not realized in actual markets (Allcott and Greenstone 2012). A wide variety of explanations have been offered for this so called “energy efficiency gap”, few of which have been tested empirically (Allcott and Greenstone, 2012; Gillingham and Palmer, 2014). For example, market failures arising from lack of information, lack of attention, or capital constraints may keep people from making investments that are otherwise cost-effective. It is also possible that the true savings from energy efficiency improvements may not match the engineering estimates of savings, making some types of investments less attractive than on paper (Fowlie et al., 2015). Laboratory estimates of savings do not account for improper installation or behavioral factors that affect energy use.

The challenge for researchers and policymakers is to identify circumstances in which
market failures may prevent consumers from taking advantage of profitable investment opportunities. Policy makers can then better target policies to address market failures when they are present in order to get higher returns on energy efficiency spending. This paper explores a potential investment inefficiency caused by asymmetric information about energy costs between landlords and tenants. If tenants are perfectly informed about the energy efficiency of a unit, landlords can recoup optimal investments in energy efficiency through higher rents. However, if tenants are uninformed, they will not be willing to pay higher rents reflecting the full savings from more efficient apartment units.\(^1\) Since landlords cannot fully recover investments through higher rents, they will under-invest in efficiency. Asymmetric information may also affect tenants’ decisions to leave a unit. Uninformed tenants pay more for high energy cost units relative to the full information case. Tenants who are initially uninformed learn the “true” energy payment for the apartment after they move in. They are more likely to leave an apartment unit with relatively high energy costs than relatively low energy costs.\(^2\) In fact, reduced resident turnover is cited as one of the primary benefits to landlords of increasing energy efficiency in multi-family units by Austin Energy.\(^3\)

In order to test these predictions, I take advantage of variation in which party pays for energy. Under complete information, the incidence of a given level of energy cost should be the same under both payment regimes, similar to a tax.\(^4\) Under asymmetric information, the combined rent and energy cost payment is known to the tenant upfront in the landlord pay regime but not in the tenant-pay regime. Therefore, the effect of energy costs on turnover, housing costs and investment in energy efficiency differs between the two payment regimes.

\(^1\)While landlords may signal that they have an efficient unit, it is difficult for new tenants to assess the veracity of the landlord’s claim from an apartment walk-through. Even previous bills have limited value because prospective renters do not know the energy consumption habits of past tenants.

\(^2\)These predictions have close analogies to asymmetric information models in the labor literature. First, asymmetric information may lead employees to under-invest in general skills because, if new employers cannot observe the investments, workers will not be able to earn higher wages (e.g. Chang and Wang 1996, Katz and Zilderman 1990 and Waldman 1990). Second, low talent workers will be more likely to leave firms after the incumbent employer (but not outside employers) has learned that they are low ability (Greenwald 1986 and Gibbons and Katz 1991).

\(^3\)see: http://www.austine energy.com/wps/portal/ae/programs/ecad-ordinance/for-multifamily-properties

\(^4\)It is likely that the level of energy used will depend on the payment regime. I examine this point more closely in both the conceptual framework and empirical sections.
under asymmetric information but not under symmetric information.

I compare market outcomes between the two payment regimes exploiting energy cost variation in the form of heating fuel price movements over time. The energy costs of an apartment unit are a function not just of the efficiency of the appliances and the level of building insulation, but fuel costs and the amount of energy services consumed. A shock to any one of these three components leads to a shock in energy costs. I am able to isolate exogenous variation in energy costs in the form of the difference between heating oil and natural gas prices over time. Fluctuations in these prices have led to large changes in the relative energy costs of units that heat with oil versus units that heat with gas. While most of the U.S. uses natural gas to heat, this study focuses on the northeastern United States where 30-40% of occupied units heat with oil.5 With two major fuel types, I can control for unobserved variation in the macroeconomic environment and isolate the effects of fuel price changes on market outcomes. Using panel data from the American Housing Survey on unit characteristics and monthly rents, I can also control for time-invariant characteristics of apartment units with unit fixed effects, and trends in certain types of units with characteristic-by-year fixed effects.

My results are consistent with the predictions of a housing search model under asymmetric information. First, I find evidence that high cost units turnover faster than low cost units only when tenants pay for energy. This suggests that tenants who are initially uninformed are receiving cost shocks as they learn the “true” energy cost for the apartment.6 Second, I find that fuel price movements cause shifts in rent in the landlord-pay regime but not the tenant-pay regime. This result is robust to limiting the sample to supply-inelastic

\footnotesize
6The intuition is similar to that developed in the labor literature on the positive relationship between experienced match quality that can only be observed on the job and employment duration (Jovanovic 1979). Here, tenants do not realize the energy costs of the unit until they have made several utility payments. They are more likely to leave units with higher energy costs (lower experienced match quality) than units with lower energy costs. Selection of high energy costs apartments into the pool of available units, is assumed to have a small effect on the distribution of energy costs, since exogenous turnover rates are high in the rental housing market. As a result, landlords do not lower rents enough to prevent turnover since the likelihood of finding a new uninformed tenant is high enough.
urban areas, where any shifts in tenant demand caused by changes in fuel prices would have the highest pass-through rates to rents. Finally, I find evidence that landlords who pay for energy themselves are more likely to make cost saving investments than those who do not.

The price of oil rose relative to natural gas during the first decade of the 21st century and many residences converted from oil to gas. If tenants correctly valued energy costs, the conversion rate from oil to gas during this period would be the same irrespective of which party pays. Back of the envelope calculations suggest that close to 47,000 units in the northeast census region did not convert due to asymmetric information. The foregone savings from these units were as high as $350 per unit per year or 24% of household energy costs. Overall, energy costs were 2% higher for tenant-pay oil homes than they would have been absent asymmetric information. These estimates are proportionate to the lost savings projections for under-investment in many other major efficiency investments due to asymmetric information, suggesting that lack information over energy costs could have a substantial effect on residential rental energy use. Correcting asymmetric information would reduce energy use roughly 1-3%, an effect equivalent to a short-run electricity price increase of 11-20%.

The fact that asymmetric information between landlords and tenants can lead to significant under-investment in energy efficiency has important policy implications. For example, programs that provide information to tenants, such as energy audit and disclosure requirements, may to help alleviate information asymmetries. Standards or energy efficiency subsidies can also be used to address the under-investment problem in rental housing. Carbon taxes and cap-and-trade programs will not be as effective in inducing efficient levels of energy efficiency investment in rental markets where uninformed tenants pay for energy, affecting optimal tax policy. For policymakers trying to address both externalities and under-investment under asymmetric information, the optimal energy tax may be below marginal damages coupled with higher subsides than under full information (Allcott et al. 2014).

This paper makes contributions to two areas of the literature. First, it contributes
to the burgeoning literature examining potential explanations for the energy efficiency gap. Second, it contributes to the literature on the empirical identification of asymmetric information in markets. The energy efficiency gap has been recognized in the theoretical and policy literature for over 30 years, and while researchers have suspected that asymmetric information between landlords and tenants may lead to under-investment in efficiency, it is important to identify and quantify its affects empirically. For example, while used cars markets are often considered a canonical example of markets with asymmetric information, it is not clear that car quality information is unpriced (e.g. Bond 1982 and Lewis 2011).

Previous attempts to quantify the effects of asymmetric information in rental markets use cross-sectional energy consumption surveys to compare the efficiency of buildings and appliances between homeowners and renters that pay for energy themselves. They find that rental units in the tenant-pay regime are less likely to have efficient refrigerators, clothes washers and dishwashers (Davis 2012), and are less likely to be well insulated (Gillingham et al. 2012). The identifying assumption in these approaches is that renters and homeowners do not systematically differ in their preferences over energy efficiency. However, renters may be different than homeowners in unobservable ways, so that renters’ preferences are divergent enough from homeowners to explain the difference in energy efficiency investments without any market failures. This paper builds on previous work by providing the first empirical evidence on the energy cost asymmetries between landlords and tenants using exogenous variation in energy costs.

This paper also contributes to the literature on the empirical identification of asymmetric information in markets. Asymmetric information has been identified as a potential source of market failure in markets such as used cars, insurance, labor, and lending.7 It is challenging for researchers to empirically identify asymmetric information as the source of

7Lack of information about quality and risk is thought to have selection effects that reduce the volume of transactions in used car markets, insurance, and lending below socially optimal levels (Akerlof 1970, Rothschild and Stiglitz 1976). Asymmetric information is also thought to lead to misallocation of workers to jobs and underinvestment in human capital (e.g. Chang and Wang 1996, Katz and Zilderman 1990 and Waldman 1990).
market failures because agent attributes that are unobservable to the uninformed party are usually unobservable to researchers as well. As a result, it is hard to separate the effect of uninformed parties on one side of a transaction from unobservable systematic differences among agents. So, while it is widely believed that asymmetric information has negative effects in a variety of markets, there is limited evidence of its existence. In labor markets, for example, it is impossible to observe “true” levels of ability or to see exogenous variation in individual ability over time, making it difficult to observe whether or not worker talent is fully priced into wages. As a result, studies have relied on variables that are correlated with talent and observable to the researcher, but are unobservable to employers (e.g. Farber and Gibbons 1996, Lange 2007, Schonberg 2007). This technique requires strong assumptions about the evolution of the unobserved talent over time. Other approaches have relied on plausibly exogenous variation in distributions of worker ability across cohorts because individual talent is not readily observable (Kahn 2013).

My approach has several features that are unique in the literature on the empirical estimation of asymmetric information. First, I am able observe a component of the unobserved energy cost parameter through fuel price movements. Second, I am able to isolate exogenous variation in the unobserved energy cost parameter with the relative price movement of two different heating fuel types. Further, I take advantage of variation in payment regime to compare market outcomes where the combined rent and energy payment are known up front.

8In insurance and lending markets, it is often observable ex-post that the choice of certain policies or coverage is associated with the riskiness of the outcome, but it is difficult to distinguish between moral hazard and adverse selection. Finkelstein and Poterba (2004) find evidence of adverse selection in annuities markets where moral hazard is not likely to be much of an issue. In addition, Finkelstein and Poterba (2014) are able to use “unused observables” that are correlated with insurance demand and subsequent risk experience, but are unused in pricing the insurance to isolate ex-ante differences in risk preferences before there are differences in insurance coverage. Hendren (2013) finds that those rejected from long-term care, disability and life insurance have more private information than those served by the markets. He elicits consumers’ subjective probability that future events will happen which trigger payouts from insurance. He finds evidence of asymmetric information in that the subjective probabilities have explanatory power in predicting the subsequent event after conditioning on the public information insurance companies observe. Adams et al. (2009) use plausibly exogenous variation in the size of sub-prime car loans due variation in car price and minimum down payment to separate the effects of moral hazard from effects of adverse selection on default. Dobbie and Skiba (2013) use discontinuities in eligibility for loan amounts based on pay stubs and are able to isolate the effects of moral hazard from adverse selection in pay day loan markets.
with market outcomes where tenants pay or may not be informed about the energy cost component of their housing costs.

In the next section, I describe the conceptual framework for the paper. In section 3, I introduce the data used in the analysis. In section 4, I describe the empirical strategy and results for the three market outcomes: unit turnover, rents, and conversion from oil to gas. In section 5, I explore the implications of energy cost information asymmetries between landlords and tenants for the energy efficiency gap. In section 6, I conclude.

2 Conceptual Framework

2.1 Search Frictions and Asymmetric Information

There are important frictions in rental housing markets that make it costly for landlords and tenants to find each other. It takes time for landlords to find tenants interested in renting their units, meaning landlords may experience times when their unit is vacant. Likewise, prospective tenants have to spend time and effort to acquire information about housing options and will be imperfectly informed about the market. A competitive model is therefore a limited framework for the study of rental housing markets because it does not account for these important frictions or predict vacancies. Search models were developed in the labor literature as tractable frameworks for markets with these kinds of frictions (see Rogerson et al. 2005 for a summary of search-theoretic models in the labor market) and have been used to model the matching process of landlords and tenants (e.g. Read 1993, Read 1997, Arnott and Igarashi 2000).

Search models begin with a matching technology for the two parties, in this case landlords and tenants. There is a rate at which landlords meet potential tenants and a rate at which tenants view apartment units. These rates are a function of the number of vacancies and the number of potential tenants, or the “tightness of the market.” The matching technology creates a flow of potential contracts and is meant to represent the notion of friction
or the time it takes for landlords and tenants to get together. In each opportunity to match, tenants and landlords decide whether or not to enter into a contract. Tenants have a distribution of idiosyncratic preferences that determine match quality and an outside option of temporary housing. Tenants determine a reservation rent, or maximum amount they would be willing to pay for a unit given the match quality, by optimizing the trade-off between reduced search costs and lower rent.

Landlords are monopolistically competitive, having rent-setting power as a consequence of the tenants’ costly search in a market with differentiated products. Landlords set rents to maximize profit from being on the market, trading off higher rent and the probability of vacancy. If the combination of the quoted rent and the match quality are lower than the reservation rent, a contract is formed. Otherwise the two parties continue to search.

Little work has been done to model the effects of asymmetric information in rental housing markets, but its effects have been well explored in labor markets with similar search frictions. Neither employers nor tenants can exhaustively screen as there are some facets of the match that are difficult to perfectly forecast. This means aspects of jobs and apartments are “experience goods,” i.e., their quality can only be determined once the match is formed (Nelson, 1970). Therefore, employers (current tenants) have more information about a current employee (apartment unit) than prospective employers (prospective tenants).

This type of asymmetric information creates two effects of interest that have been identified in the labor literature: 1) inefficient matching and 2) under-investment in human capital. Inefficient matching affects employee turnover rates and wages. Under asymmetric information, new employers cannot write contracts based on worker ability, so low talent workers will be more likely to leave firms after the incumbent employer (but not outside employers) has learned that they are low ability (Greenwald 1986 and Gibbons and Katz 1991). Likewise, high talent workers might leave firms at inefficiently low rates. As a result, low-ability workers are overpaid relative to their productivity and high-ability workers are underpaid. Even after incumbent employers learn workers true ability, high talent workers
will still be underpaid relative to the symmetric information case since their outside option will not be as high. Asymmetric information may also lead workers to under-invest in general skills (e.g. Chang and Wang 1996, Katz and Ziderman 1990, and Waldman 1990). If new employers cannot observe the investments, workers will not be compensated for them. Even with incumbent employers, workers will earn less from their investments, because their outside option will not be as high.

In Appendix A1, I formally derive a search model for rental housing with endogenous separation, which yields three analogous predictions under asymmetric information related to turnover rates, rents and energy cost saving investments. Tenants are analogous to employers and apartment units to employees. As with worker ability, the energy costs of an apartment are difficult for tenants to observe until the match is formed. This asymmetric information about energy costs leads to: 1) inefficient matching and 2) under-investment in cost-saving capital. Inefficient matching between landlords and tenants affects turnover rates and rents. First, higher energy cost units will turn over faster and lower energy cost units will turn over slower than would be efficient. Second, tenants will overpay for units with high fuel costs and underpay for units with low fuel costs compared to the symmetric information case, i.e. the incidence of energy payments will be higher for tenants. Even after tenants learn the true fuel costs of an apartment unit, they will still overpay for higher energy cost units relative to the symmetric information case because landlords can charge the next uninformed tenant more. In addition, asymmetric information will lead to under-investment in cost-saving capital. If new tenants cannot observe investments, landlords will not be compensated for them.

I empirically test for evidence of asymmetric information in rental search markets by taking advantage of: 1) variation in which party pays for energy and 2) exogenous variation in energy costs in the form of relative fuel price movements of oil and gas.
2.2 Testable Predictions

In the landlord-tenant setting, there is variation in which party pays for energy. In order to think through the effect of payment regime on rent, turnover and efficiency investments, assume for now that payment regime is pre-determined.\(^9\) Let \(R\) be the total housing cost inclusive of the energy payment, \(\mu\). Assume that tenants’ best prediction of future energy costs are contemporaneous energy costs.\(^{10}\) If \(r\) is the listed rent, then the total housing price will be \(R = r_{tpay} + \mu\) for tenant-pay units and \(R = r_{lpay}\) for landlord-pay units. Assume a tenant is indifferent between two otherwise identical units independent of payment regime and fuel type as long as the total housing cost, \(R\), is the same. In the tenant-pay regime, whether or not a tenant is informed about energy costs affects her decision to rent at a given rate, \(r_{tpay}\) since it affects her perception of \(R\). On the other hand, in the landlord-pay regime, whether or not a tenant is informed about energy costs does not affect her decision to rent at \(r_{lpay}\) since it has no effect on her perception of \(R\).

2.2.1 Landlord Pays For Energy

Landlords choose a rent level to maximize profit, trading off the probability the unit will be vacant and the payoff they get from occupancy, \(r_{lpay} - \mu\). Since tenants’ information status does not affect their decision to rent at a given rate, \(r_{lpay}\), it also has no effect on landlords’ choice of what rental rate to offer a prospective tenant for a given probability distribution of occupancy as a function of rent. The rent that landlords choose, \(r^{*}_{lpay}\), will be increasing in \(\mu\). All else equal, landlords with higher energy costs will choose higher rents since the

\(^9\)In my empirical analysis, I carefully consider that landlords might switch payment regimes and how this might affect market outcomes. With unit fixed effects and payment regime specific indicators, I am able to isolate the effects of fuel price movements on the market outcomes of interest by controlling for: 1) compositional changes in the housing stock that may result from changes in payment regime and 2) any systematic changes in unit value that may be correlated with changing payment regime.

\(^{10}\)Anderson et al. 2013 use survey data designed to directly elicit consumers’ beliefs about future gasoline prices and find that consumers’ beliefs are statistically indistinguishable from a no-change forecast, or a random walk. Further, no change forecasts are sensible for consumers as they predict future crude oil prices as well or better than forecasts derived from futures markets and surveyed experts (Alquist and Kilian 2010; Alquist et al. 2013).
relative benefit of having a tenant as opposed to being vacant is lower than for landlords with lower energy costs.

When it is time for tenants to decide whether or not to renew a lease, they will again be fully informed about R. Landlords choose the rent to offer an incumbent tenant trading off the probability the tenant will stay and the revenue they will receive against what they would earn if the tenant decides to go.

Landlords will make investments in energy cost saving capital if the expected flow (per period) of savings exceeds the amortized cost of the investment. Since rental amounts and occupancy levels in the landlord-pay regime are not affected by tenants’ information status, neither are energy investment decisions.

2.2.2 Tenant Pays For Energy: Full Information

Assume for now that the energy cost will be the same for the unit independent of which party pays.11 Since a tenant is indifferent between two otherwise identical units independent of payment regime and fuel type, they will be equally likely to rent a unit in the tenant-pay regime as the landlord-pay regime if $R_{lpay} = R_{tpay}$. As a result, landlords will choose rent, r_{tpay}^*, where $r_{tpay}^* + \mu = r_{lpay}^*$. In other words, the incidence of the energy payment will be the same independent of which party pays, similar to a tax. Figure 1 displays the relationship between energy costs and rent charged for a unit under the two different payment regimes.

The solid black line represents the positive relationship between the landlord’s choice of rent in the landlord-pay regime, r_{lpay}^*, and energy costs. When tenants are fully informed, $R_{lpay}^* = r_{lpay}^* = R_{tpay}^* = r_{tpay}^* + \mu$. While R is the same independent of which party pays, the monthly rent differs between the two payment regimes by the level of μ. The solid gray line represents the negative relationship between rent and energy costs in the tenant-pay regime.

11In reality, tenants have little incentive to conserve when they face zero marginal cost of consumption and will may to use more energy when landlords pay for it. Though, existing literature suggests the difference in usage is relatively small in magnitude, 0.5-75\% of energy expenditure (Levinson and Niemann (2004)). I discuss the impact of moral hazard in the landlord-pay regime on the market predictions in what follows (section 2.2.4).
Higher costs lower the probability that tenants will rent, so landlords with high energy cost units choose lower rents than landlords with low energy cost units.

Since the incidence of the energy payment is the same irrespective of which party pays, the effect of energy costs on turnover rates and investment in efficiency would be the same for both payment regimes as well. In this sense, the landlord-pay regime can serve as a full information counterfactual for outcomes in the tenant-pay regime.

2.2.3 Tenant Pays For Energy: Asymmetric Information

The incidence of energy costs will no longer be the same under both payment regimes if there are information asymmetries. For simplicity, assume that when tenants lack information, they will match with a unit based on the expected energy payment, \(\hat{\mu} = E[\mu] \), rather than the true energy payment. The dashed gray line in Figure 1 represents the relationship between monthly rent, \(r_{tpay}^{asy} \), and energy costs for the tenant-pay regime under asymmetric information. Since tenants will be equally likely to rent all otherwise identical units independent of energy costs, the line has zero slope.\(^{12}\) If tenants are totally uninformed, they will feel the full incidence of the energy payment, where the combined rent and energy payment is, \(R_{tpay}^{asy} = r_{tpay}^{asy} + \mu \). Tenants will pay more for high energy cost units and less for low energy cost units relative to the landlord-pay regime. Even after tenants learn the true fuel costs of an apartment unit, they will still overpay for higher energy cost units relative to the landlord-pay regime, because landlords can charge the next uninformed tenant more.

Tenants decide whether or not to renew based on their match quality with the apartment unit and their combined rent and energy costs, \(R \). High cost units will be less likely

\(^{12}\)Fuel price increases raising rents in the landlord-pay regime and having no effect on rents in the tenant-pay regime is consistent with asymmetric information. However, this result could also be consistent with symmetric information with certain combinations of supply and demand elasticities. If housing supply were perfectly elastic or demand were perfectly inelastic, rents would adjust with energy costs in the landlord-pay regime but not the tenant-pay regime. In both of these particular cases the incidence of the energy cost would fall entirely on the tenant. In the landlord-pay regime, landlords would adjust rent to fully pass-through energy costs. In the tenant-pay regime, rents would not adjust to changes in energy costs, resulting in no compensation for tenants. In the empirical section I limit the sample to supply inelastic areas to determine whether the effects of energy cost on rent are driven by the relative supply and demand elasticity rather than asymmetric information
to renew and low cost units will be more likely to renew than in the full information case because tenants who are initially uninformed are receiving cost shocks as they learn the “true” energy cost for the apartment.13

Testable prediction 1: Under asymmetric information, higher energy costs will cause higher turnover rates in the tenant-pay regime than the landlord-pay regime.

Under asymmetric information, the incidence of energy costs will be higher on tenants in the tenant-pay regime than the landlord-pay regime. A direct test of this prediction would be to evaluate the effect of energy costs, μ, on the combined rent and energy payment, R using relative fuel price movements as an instrument for energy costs. Unfortunately, the AHS does not have energy consumption information. However, even though the incidence of fuel price movements cannot be compared directly between the two payment regimes, it is possible to test whether the effects of fuel price movements on rents are consistent with asymmetric information.

Testable Prediction 2: Under asymmetric information, fuel price increases will increase rent in the landlord-pay regime, but have little to no effect on rent in the tenant-pay regime.

In addition, landlords will be less likely to make energy cost saving investments when uninformed tenants pay for energy than when they pay for energy themselves. When uninformed tenants pay for energy, landlords receive a lower premium for energy efficient units than when tenants are fully informed or landlords pay for energy themselves. The investment considered in this paper is the decision to convert from oil to gas. Let, W^{gas}, be the per period value of having a gas unit on the market and, W^{oil}, be the per period value of having an oil unit on the market. Landlords convert from oil to gas if the premium from

13The intuition is similar to that developed in the labor literature on the positive relationship between experienced match quality that can only be observed on the job and employment duration (Janovic 1979). Assuming that the majority of turnover decisions are caused by changes in tenant’s preferences that are exogenous to housing costs (e.g. the birth of a child, a new job, a child leaves home, etc.), selection of high energy costs apartments into the pool of available units, has a small effect on the distribution of energy costs, since exogenous turnover rates are high in the rental housing market.
having a gas unit on the market, as opposed to an oil unit, exceeds the upfront capital costs of investment, K:

$$W^{gas} - W^{oil} > K$$

Assume for simplicity that K is the same for all units and does not change over time. Again, since the incidence of the energy costs is the same irrespective of which party pays, there should be no difference in switching from oil to gas rates between the two payment regimes. When tenants lack information and pay for energy, it creates a distortion in the market where the premium from having a less expensive gas unit is reduced and landlords are less likely to invest in switching from oil to gas.14 Let $\Gamma \in (0, 1)$ represent the distortion in a landlord’s investment caused by asymmetric information so that:

$$\Gamma \left[W^{gas}_{lpay} - W^{oil}_{lpay} \right] = W^{gas}_{tpay} - W^{oil}_{tpay}$$

$\Gamma < 1$, indicates that asymmetric information creates a distortion that leads landlords to under-value energy cost savings in the tenant-pay regime.

Testable prediction 3: Under asymmetric information, higher price differences between oil and gas will cause higher conversion rates from oil to gas in the landlord-pay regime than in the tenant-pay regime.

\subsection*{2.2.4 Moral Hazard When Landlords Pay for Energy}

So far I have assumed that there is no moral hazard and tenants use the same amount of energy whether they pay for energy or not. However, in reality, tenants have little incentive to conserve when they face zero marginal cost of consumption and may to use more energy when

14Another way to model asymmetric information about fuel costs, which would yield similar predictions in my empirical context, would be to assume that tenants do know whether they heat with oil or gas, but they are not aware of how the prices move relative to each other over time.
Levinson and Niemann (2004) use residential energy consumption surveys to compare self-reported thermostat adjustment patterns between individuals that pay for energy themselves, and those that have energy included in the rent. They find that respondents are more likely to turn the thermostat down when they leave and at night when they pay for energy than when they do not. They estimate the effect of this behavioral change to be relatively small, 0.5-0.75% of total energy expenditure.

While the overuse caused by moral hazard is likely to be small, it could affect the market outcomes of interest, even if tenants are fully informed about energy costs. Let $\mu = p \times q$, where p is the price of fuel and q is the quantity of energy consumed. If tenants use more energy in the landlord-pay regime, $q_{\text{lpay}} > q_{\text{tpay}}$, then $\frac{\partial R_{\text{lpay}}}{\partial p} > \frac{\partial R_{\text{tpay}}}{\partial p}$. When tenants are choosing to renew a lease in two otherwise identical high energy cost apartments and there has been a relative fuel price increase during their tenure, they may be more likely to leave the unit in the landlord-pay regime than the tenant-pay regime, because the housing cost, R, went up by more in the landlord-pay regime. Therefore, if fuel prices cause higher turnover in the tenant-pay regime than the landlord-pay regime, it is strong evidence of asymmetric information.

While it may be that $\frac{\partial R_{\text{lpay}}}{\partial p} > \frac{\partial R_{\text{tpay}}}{\partial p}$, this does not affect the predictions that I am able to test for the effects of fuel price movements on rent. I predict that fuel price increases will increase rent in the landlord-pay regime whether or not tenants are informed. In the tenant-pay regime, fuel price increases will decrease rent if tenants are informed but have little to no effect on rent if tenants are uninformed. However, without supply and demand elasticities or energy use information, the magnitude of the effect in the two payment regimes is not directly comparable, even in the absence of moral hazard. If fuel price movements have little to no effect on rent, particularly in supply inelastic areas, this is strong evidence of asymmetric information.

So far I have assumed that tenants are homogenous in their energy use. With heterogeneity in use, high energy users would be more likely to rent landlord-pay units. This selection on the part of tenants may also lead to higher energy consumption in the landlord-pay regime than the tenant-pay regime.
Under asymmetric information, price difference increases will make conversion from oil to gas more attractive in the landlord-pay regime than the tenant-pay regime. This effect could be exaggerated if tenants use more energy when landlords pay. I address the relative impacts of these two effects on conversion rates in the broader implications of asymmetric information for the energy efficiency gap (section 5).

3 Data

3.1 Rental Housing Data

I use data from the national American Housing Survey (AHS) from 1985 to 2009, which surveys over 50,000 households every two years and is designed to be representative of the housing stock in the United States. Beginning in 1985, the same housing units were surveyed every odd numbered year with additions to reflect new construction. I focus on the Northeast Census region, where 30–40% of homes heat with oil over the time period.\(^{16}\)

The AHS reports data on many attributes of the housing unit. My main variables of interest are monthly rent, whether utilities are included in the rent, and primary heating fuel. I also use data on other attributes, including number of rooms, bathrooms, half bathrooms and bedrooms, year built, a degree day variable, household income, degree of urbanization, and number of units in the building. In addition, I use several indicator variables for the presence of clothes dryers, dishwashers, central air, room air, and poor living conditions.\(^{17}\)

There is little identifying geographic information other than the four census regions, a range of heating and cooling degree days, and a five-level scale of urbanization.

I use only rental housing units that pay rent on a monthly basis. This excludes 3% ...

\(^{16}\)The Northeast Census region, region 1, is comprised of the following states: Maine, New Hampshire, Vermont, New York, Massachusetts, Connecticut, Rhode Island, Pennsylvania, and New Jersey.

\(^{17}\)A unit is classified as having severely inadequate living conditions if there is no running water, a tub or shower, or flush toilet, or if there are frequent break downs of heating equipment, or if electricity is not used or there is exposed wiring. A unit can also be classified as having moderately inadequate living conditions if it lacks complete kitchen facilities, toilets break down frequently, or an unvented heater is the mean heating equipment.
(1507 observations) from the sample, which are recorded as paying annually, weekly, or quarterly. In addition, I drop observations that have any rental adjustment limitations. These limitations include rent adjustments due to the relationship with the owner, rent control/stabilization, households that receive vouchers to help pay the rent, and occupants of public housing. I drop about 12% of the remaining sample (5592 observations) due to these limitations on rental adjustments, mostly due to rent control.

A housing unit’s primary heating fuel can change between surveys, if landlords invest in new capital equipment and infrastructure. In addition, there can be some errors in reporting the fuel type during the enumeration of the survey. In some cases there is missing information on which party pays for the heating fuel. If the unit was categorized as vacant, the payment information was not available. I take several steps to eliminate units with primary heating fuels other than oil or gas, reduce the noise from errors in the sample, and fill in information for vacant units (see Appendix A2).

My final sample has 6163 housing units. I assign each housing unit the most common heating fuel and most common payment regime observed for that unit in order to provide summary statistics at the household level in Table 1. In units where gas is the primary heating fuel, tenants pay the utilities in 69% of cases and in units where oil is the primary heating fuel, tenants pay the utilities in 29% of cases.

Table 1 displays the results of t-tests comparing the means of the covariates between the two different payment regimes. Units where landlords pay for energy differ in predictable ways from those where tenants pay for energy. For both heating fuels, in units where landlords pay for energy, there are more units in the building, units are smaller (i.e. fewer rooms, bedrooms, bathrooms, etc.), they are less likely to have big appliances such as dishwashers and clothes dryers, they are more likely to have poor conditions, and people with lower incomes live there. The units are also slightly older on average when tenants pay for energy.

Figure 2 displays the distribution of the number of rooms, bathrooms, and units in the building as well as decade built, degree day scale, and urbanization scale. Importantly,
there is good overlap of these covariates between the four heating fuel and payment regime combinations, meaning there are good counterfactual comparisons across unit types.

While the mean covariate differences are significant among different types of units, I will be able to flexibly control for differential trends in payment regime and for differential trends in unit characteristics with covariate indicator-by-year fixed effects. Any remaining unobserved variation between oil and gas units or between the two payment regimes would have to be correlated with changes in the difference in price between oil and gas in order to bias my estimates.

3.2 Heating Fuel Price Data

I create regional fuel price variables for the Northeast Census Region as a consumption-weighted average of state-level annual residential prices reported by the EIA. For natural gas prices, I use average residential natural gas prices weighted by natural gas deliveries to residential consumers. For heating oil prices, I use U.S. number 2 distillate residential prices weighted by distillate fuel oil sales for residential consumers.\(^{18}\) There is little variation in retail prices among the states as fluctuations in heating fuel prices are largely determined by world or national markets with adjustments for transportation costs. I inflate all prices to real 2014 dollars using the consumer price index. Both natural gas and heating oil prices were converted into the same units, dollars per MMBTU, in order to make them comparable.

Figure 3 displays the price variation in natural gas and residential heating oil prices from 1985 to 2009. In the late 1980’s, the per-BTU prices of oil and gas were comparable, followed by a period in the 1990’s when oil was less expensive than gas. In the mid-2000s, oil became much more expensive as world demand increased and in 2009, natural gas started getting less expensive with the development of hydraulic fracturing techniques. Importantly, the variation in the difference in fuel prices does not follow a simple linear trend, allowing me to identify the effects of fuel price variation on housing rents.

\(^{18}\)EIA state level natural gas prices are sourced from forms EIA-857 and EIA-910. No. 2 Distillate prices by sales type are sourced from forms EIA-782A&B and consumption levels come from form EIA-821.
4 Empirical Strategy and Results

4.1 Unit Turnover

4.1.1 Empirical Strategy

If tenants are not informed about energy costs, the effect of relative price increases on turnover will be higher in the tenant-pay regime than the landlord-pay regime. Landlords in high energy cost units in the tenant-pay regime are able to charge higher rents as a result of tenants’ ignorance, so when tenants discover the “true” energy costs, they will be less likely to renew given their match quality. Conversely, landlords with low energy costs in the tenant-pay regime will not be able to charge the full premium of having the less expensive fuel as a result of tenants’ ignorance, so that after tenants discover the “true” energy costs, they will be more likely to renew given their match quality. When landlords pay for energy, the heating costs are included in the contract, so tenants do not receive cost shocks that affect turnover rates.

For the purposes of this analysis, a unit is designated as “turned over” if it is either vacant or has a new tenant and was occupied at the time of the previous survey (2 years ago). Observations were removed if they were the first observation of the panel, missing from the previous survey, or were vacant (not occupied) in the previous survey, as they would not be eligible to turnover. The estimation of the effect of fuel price changes on the probability of turnover is as follows.

\[
T_{it} = \beta_0 + \beta_1 P_{it} + \beta_2 P_{it} \times I_{tpay}^{i} + \beta_3 I_{oil}^{i} + \beta_4 I_{oil}^{i} \times I_{tpay}^{i} + X_{it} \beta + \gamma_t \times I_{tpay}^{i} + \gamma_t \times v_i + \omega_i + \epsilon_{it} \tag{1}
\]

The dependent variable, \(T_{it}\), is a binary indicator for turnover of unit \(i\) in survey year \(t\). The fuel price, \(P_{it}\), is the annual weighted average for the northeast and varies whether unit \(i\) is oil or gas. Whether a unit heats with oil is indicated by, \(I_{oil}^{i}\), and \(I_{tpay}^{i}\) indicates the tenant pays for the heating fuel. Year fixed effects, \(\gamma_t\), are interacted with the tenant-pay indicator.
as well as building vintage fixed effects \textbf{vin}. The matrix X_{it} contains covariates, ω_i are unit fixed effects, and ϵ_{it} is the error term. The covariates in the matrix X_{it} include indicators for household income bins, the presence of clothes dryers, dishwashers, central air, room air, and poor living conditions. For specifications without unit fixed effects, I control for other time-invariant physical characteristics about the unit and its location with indicator variables for number of rooms, bathrooms, half bathrooms and bedrooms, a degree day variable, degree of urbanization, and number of units in the building.

The thought experiment is to determine all else equal, how fuel costs affect unit turnover. It is normally difficult to separate the effect of fuel price movements on housing market outcomes from other macroeconomic trends. The advantage of having two fuel types, is that it is possible to control for these trends with year fixed effects, and therefore isolate the effect of fuel price movements on turnover. Since there is no cross-sectional variation in price, year fixed effects are collinear with one fuel price, so that the identifying variation is the difference between the price of oil and the price of gas. The identifying assumption of this approach is that oil units do not systematically differ from gas units in an unobservable or inadequately controlled for way that is correlated with the difference in price between oil and gas.

The coefficient of interest is β_2, which is an estimate of the differential effect of fuel price increases on turnover in the tenant-pay regime as opposed to the landlord-pay regime. With flexible trends for units where tenants pay for energy, I control for any yearly variation in turnover rates in the tenant-pay regime that might be common to both fuels. I also include flexible trends for the unit vintage to account for differential impacts of vintage on turnover as a housing unit ages.

4.1.2 Endogenous Switching of Heating Fuel or Payment Regime

One potential concern is that when landlords make investments to switch their fuel type or payment regime in response to the variation in the price difference between fuel types, it will
cause a compositional change among the four fuel type and payment regime combinations. The advantage of panel data is that I can control for the time-invariant quality of a unit. Therefore, even if units with higher unobserved quality change fuel type or payment regime in response to price changes, it will not bias my estimates. However, it may be that landlords upgrade other aspects of the unit that are unobserved in the data when they convert the heating fuel. For example, they may redo the kitchen and buy a new gas stove. Then, the units post-conversion will have an unobservably higher quality than before the conversion and may be less likely to turnover, which could bias my estimates of the turnover response to the fuel price variation.

Few if any landlords will convert from gas to oil over the time period since oil is the dirtier, less convenient, and more expensive fuel.19 If upgrades are happening, \(\beta_3 \), would be negative and would control for this systematic increase in quality (decrease in turnover probability) when converting from oil to gas. With a unit fixed effects regression, \(\beta_3 \) is identified from the units that convert. Another time landlords might make upgrades would be in converting from the landlord-pay regime to the tenant-pay regime. Switching from tenant-pay to landlord-pay should be almost costless, so it is unlikely that major upgrades are associated with those conversions. If units were getting unobservably nicer when they switched to tenant pay, the flexible trend for tenant-pay units would control for the systematic increase in quality.

\subsection*{4.1.3 Results}

Table 2 shows the results from the estimation. The first column shows the result for the estimation without unit fixed effects whereas the second column includes unit fixed effects. The point estimates of the fuel price coefficient are close to zero and statistically insignificant indicating that an increase in fuel price does not increase the probability of turnover when

19In the sample, 15\% of units that heat with oil are recorded as gas in later surveys. For units that heat with gas, less than 4\% are recorded as oil in later surveys. Some of the recorded changes will be due to measurement error, making it rare for gas units to convert to oil.
landlords pay for energy. The estimate of the coefficient on the interaction term of fuel price with the tenant-pay regime is positive and significant. These findings are consistent with asymmetric information. High energy cost units are more likely to turnover in the tenant-pay regime than the landlord-pay regime. Tenants receive cost shocks in the landlord-pay regime, but not the tenant-pay regime.

Columns 3 displays results for a robustness test of the identifying parallel trends assumption between the four payment regime and heating fuel combinations. Year fixed effects interacted with indicators for several of the covariates in the model are included as controls (number of bedrooms, number of bathrooms, number of rooms, units in the building, decade built, degree day variable, degree of urbanization). The concern is that there is something else following a trend that differentially affects turnover rates of certain payment regime/heating fuel combinations. These year-by-covariate interactions allow me to control flexibly for trends in observable differences between the housing types. Many unobservable differences are likely correlated with these observable differences. The point estimates of the fixed effects regressions change little with the inclusion of flexible trends in the covariates. This suggests that differences in the capitalization rates are driven by the price variation and not by unobservable trends correlated with certain utility regime and heating oil combinations.

The point estimates on the interaction term of fuel price and payment regime is consistent across specifications, ranging from 2 to 3 percentage points. There is an average turnover rate of 33% across the biannual surveys (about 16% a year). Therefore, a $1/MMBTU increase in fuel price increases the probability of turnover by 6-9%.

4.2 The Effect of Fuel Price Movements on Rents

An implication of information asymmetry is that the incidence of fuel cost movements will be higher for tenants in the tenant-pay regime than the landlord-pay regime. If tenants have no information about energy costs, they will be inelastic to fuel price movements, so that
rents will not be correlated with fuel price movements in the tenant-pay regime. Whereas, if tenants are fully informed about energy costs, we would expect fuel price movements to be negatively correlated with price movements in the tenant-pay regime. When landlords pay for energy, tenants are always fully informed of their combined rent and energy cost payment. If fuel costs go up, rents will increase, reflecting higher landlord costs. Therefore, rents will be positively correlated with fuel price movements in the landlord-pay regime, whether tenants are informed about energy costs or not.

In order to estimate the effect of fuel price movements on rents I estimate equation (1) with monthly rent as the dependent variable.20 Table 3 shows the results of this estimation. The first column are the results of the model with unit fixed effects. The point estimate of the fuel price coefficient is positive and statistically significant indicating that fuel price increases cause increases in rent when landlords pay for energy. The estimated effect of fuel price movements on rent in the tenant-pay regime is the addition of the fuel price coefficient and the coefficient on the interaction between fuel price and payment regime ($\beta_2 + \beta_3$). The point estimate of this effect is close to zero and statistically indistinguishable from zero. According to the EIA, the average home that uses oil as a primary heating fuel uses between 77 and 105 MMBTU/year.21 If a $1/MMBTU price increase were spread over a 12 month period, full pass-through would be $6-9 per month. Therefore, the incidence of energy price movements on the tenant appears to be relatively high.

Elasticity of the housing supply can also affect the degree to which shifts in demand get capitalized into rents. The effect of fuel price movements on rent could also be consistent with a very elastic housing supply, where shifts in supply (from landlords who pay energy) would affect rent levels, but shifts in demand (from tenants who pay energy) would not.

However, housing supply in the northeastern United States is relatively inelastic. Hous-

20For this analysis I drop any units coded as vacant. The highest 3% of rental amounts in the survey are top-coded for privacy concerns, so I also drop the top 3% and bottom 3% of rent values for each survey year, limiting my analysis to the middle 94% of the distribution of rents.

ing prices have escalated faster than construction costs over time, suggesting that development space is limited. Urban areas such as Boston and New York, the largest metropolitan areas in my sample, are particularly inelastic (Glaeser et al. 2008). When housing supply is inelastic, we would expect to see the greatest effects of shifts in demand on monthly rents when tenants pay for energy in supply-inelastic markets. So, as a robustness check, in column 2, I limit my sample to areas classified as “urban” where the elasticity of housing supply is likely to be relatively inelastic. Even when the sample is limited to urban areas, with inelastic supply conditions, fuel price movements have little effect on rents in the tenant-pay regime.

Column 3 shows the results for the robustness test of the parallel trends assumptions. In column 3, the model was estimated with covariate indicator by year fixed effects for the following covariates: number of bedrooms, number of bathrooms, number of rooms, units in the building, decade built, degree day variable, degree of urbanization. With the inclusion of these flexible trends, the point estimate changes little, suggesting that the differences in monthly rent are driven by the price differences and not unobservable trends in the housing unit characteristics.

4.3 Converting Heating Fuel from Oil to Natural Gas

Under asymmetric information, we would expect higher price differences between oil and gas will cause higher conversion rates from oil to gas in the landlord-pay regime than in the tenant-pay regime. Converting from oil heat to natural gas heat requires high upfront costs, so that it is unlikely that a unit would change heating fuels more than once over the sample. There is potential for measurement error of converting, particularly if I observe heating fuel changing more than once in the sample. I trim the sample in order to isolate only those observations that are likely to be true heating fuel conversions. The sample is limited to those observed 4+ times, which is about 38% of the units in the sample (1047 units, 7234
observations). The sample only includes oil homes that have either switched fuel types once or never. Once a unit switches to gas, subsequent observations are removed for that unit. I observe 364 conversions (34% of units) from heating oil to natural gas from 1989 to 2009.

I use the following linear probability model in order to test whether landlords who pay for energy are more likely to make the conversion investment than those who do not pay for energy as the price of oil increases relative to natural gas:

\[
\text{convert}_{it} = \beta_0 + \beta_1 \text{lpay}_{it-1} + \beta_2 \text{lpay}_{it-1} \times (p_{oil}^t - p_{gas}^t) + \mathbf{X}_{it} \beta + \gamma_t \times \text{vin}_{it} + \epsilon_{it}
\]

(2)

Here \(\text{convert}_{it}\) is an indicator for whether unit \(i\) converted to gas in year \(t\). \(\text{lpay}_{it-1}\) is an indicator for whether the landlord pays for energy. I use lagged values for the payment regime status since it may be influenced by the current period’s price. The price of oil and gas are \(p_{oil}\) and \(p_{gas}\) respectively.

The coefficient of interest is \(\beta_2\), which can be interpreted as the increase in the probability that a landlord will convert from oil to gas when landlords pays for energy as opposed to when tenants pay for energy if the price of oil increases by $1/MMBTU relative to the price of natural gas.

Table 4 shows the estimation results from the conversion regression described above. The dependent variable equals zero when the home heats with oil and equals one if the home converts fuel type to gas. The first two columns display the results for the estimation equation with and without covariates. The coefficient on the interaction term \(\text{lpay}_{it-1} \times (p_{oil}^t - p_{gas}^t)\) is positive and significant. This indicates that landlords are more likely to make an investment to convert to gas as it gets relatively less expensive compared to oil if they pay for energy themselves rather than the tenant. For a $1/MMBTU increase in the price of oil

\[22\text{In Appendix A3 I show results using samples limited to 3+ units and 5+ units with similar point estimates.}\]
relative to natural gas, landlords that pay for energy are 1 percentage point more likely to convert to gas than landlords that do not pay for energy. With a baseline conversion rate of 8% biannually, a $1/MMBTU increase in the price of oil relative to natural gas increases the probability that a unit where the landlord pays for energy will convert to gas by 12.5% relative to a unit where tenants pay for energy.

The third column in Table 4 displays results for the robustness test of the identifying parallel trends assumption between units where landlords pay for energy and units where tenants pay for energy. The coefficient on the interaction term $I_{t-1} \times (p_{oil} - p_{gas})$ changes little with the inclusion of covariate indicator by year fixed effects, suggesting that the differences in conversion rates are driven by the price variation and not by unobservable trends correlated with landlords paying for energy or specific unit attributes.23

5 Implications for the Energy Efficiency Gap

I find that the effect of fuel price movements on turnover rates, rents, and investment in converting from oil to gas differ between the two payment regimes in ways that are consistent with the presence of asymmetric information between landlords and tenants. The distortion of greatest interest for the energy efficiency gap is under-investment in cost savings when tenants pay for energy. During the sample period, the price of oil was higher per MMBTU than the price of natural gas from 2005-2009 and many units in the northeast converted from oil to natural gas. My results imply a one percentage point difference in bi-annual conversions between the landlord-pay regime and the tenant-pay regime per $1/MMBTU price difference between oil and natural gas. In what follows, I will use these estimates to approximate the effect of asymmetric information on fuel conversions and energy expenditures for the 2005-2009 period.

23As with the turnover and monthly rent models, indicators for the following covariates are interacted with year fixed effects: number of bedrooms, number of bathrooms, number of rooms, units in the building, decade built, degree day variable, degree of urbanization)
same proportion of units would convert from oil to gas in both payment regimes under full information. Assuming that the conversion rate would be the same for both payment regimes requires that the amount of energy used by tenants would be similar. On the one hand, tenants have the incentive to use more energy when it is included in the rent. On the other hand, with asymmetric information about energy costs, landlords that pay for energy will be more likely to make energy efficient investments, which will reduce energy consumption.\footnote{While it is beyond the scope of this paper to estimate the effect of moral hazard on energy use, as mentioned above previous estimates suggest relatively small effects, 0.5-0.75\% of total energy expenditure (Levinson and Niemann, 2004). In addition, Gillingham et al. (2010) find that owner occupied dwellings are 20\% more likely to have well-insulated attics/ceilings and 12-14\% more likely to have well-insulated walls than tenant-pay rental units. While homeowners are different than renters, their estimates indicate that the lack of insulation in rental units where tenants pay for energy leads to greater additional energy consumption than overuse when landlords pay for energy. If under-investment in efficiency from asymmetric information dominates the effect of moral hazard on energy use as these results suggest, there may be more cost effective opportunities to convert from oil to gas in the tenant-pay regime than the landlord-pay regime. If this were the case, the assumption that conversion rates would be similar in both payment regimes under symmetric information would lead to an under-estimate of the effect of the information distortion. To the extent moral hazard dominates the effect of under-investment the assumption would lead to over-estimation of the effect of the information distortion.}

Let, \(q \), be the number of houses that would convert from oil to gas absent any information distortion. Under asymmetric information, landlords in the tenant-pay regime do not receive as much of a premium for less expensive heating fuel and as a result fewer houses, \(q' < q \), convert. In order to approximate the number of housing units that would have converted over the past two years and did not due to asymmetric information, \(q - q' \), I use the result that a $1/MMBTU price difference between oil and natural gas results in one percentage point fewer conversions bi-annually in the tenant-pay regime under asymmetric information. In 2005, when the price of oil rose above the price of natural gas, \(q - q' \) is estimated as the number of tenant-pay oil units in the northeast multiplied by .01 times the price difference. In subsequent years, \(q - q' \) is the sum of the number of units that did not convert over the current two year period as well as previous two year periods as a result of asymmetric information. Table 5 columns 3–4 display the number of tenant-pay oil units in the northeast and the results of these under-conversion estimations.\footnote{The number of tenant-pay oil units are calculated by subtracting the number of rental units with fuel}
period, I estimate that close to 47,000 units, or around 9% of tenant-pay oil units did not convert from oil to gas that otherwise would have absent asymmetric information.

In order to estimate the difference in energy expenditure if the primary heating fuel is gas rather than oil, I use the Heating Fuel Comparison Calculator developed by the EIA, which takes into account fuel heat content and standard furnace efficiency ratings. For two years of expenditure, these estimates range from $300-$700 and are reported in column 5 of Table 5. The savings from converting from oil range between 12% and 24% of heating fuel expenditure for oil units, as reported in column 6 of Table 5. In column 6, I calculate the lost savings from the units that did not convert from oil to gas due to asymmetric information as a proportion of total expenditure on energy in tenant-pay oil homes. I find that by the end of the six year period, asymmetric information increased energy costs by about 2% of the entire annual energy cost for tenant-pay oil units.

Converting from oil to gas is just one of the many capital investment decisions that landlords are faced with on a regular basis. The heating fuel used and its price are one of the most easily observed energy cost features of an apartment unit, which suggests that under-investment in efficiency due to asymmetric information could be much more pervasive. For instance, it is much more difficult for tenants to observe how well insulated an apartment is, or the efficiency of major appliances such as air conditioners and refrigerators.

I find that close to 9% of tenant-pay oil houses do not convert to natural gas due to asymmetric information. The lost savings are 12-24% of heating fuel expenditure for houses that did not convert due to the information problem, which represents about 2% of the entire heating fuel cost for tenant-pay oil units. Previous work suggests that these under-investment and lost savings estimates are roughly proportionate to the effect of asymmetric oil costs included in the rent from the number of rental units that use fuel oil as reported in AHS National Summary Table: “Selected Housing Costs–Renter Occupied Units”, 2005, 2007 and 2009.

26Calculations were made using the RECS 2009 average annual site consumption for a rental unit in the Northeast using fuel oil of 53.2 MMBTU. The prices were plugged into the Heating Fuel Comparison Calculator (available: www.eia.gov/neic/experts/heatcalc.xls) to get cost comparison for the two fuels taking into account fuel heat content and the standard efficiency ratings of 78% for oil furnaces and 82% for gas furnaces.
information across many different energy efficiency investments. Gillingham et al. (2010) and Davis find a similar level of under-investment when comparing investments of owner occupied dwellings to renters that pay for energy. Gillingham et al. (2010) find that owner occupied dwellings are 20% more likely to have well-insulated attics/ceilings and 12-14% more likely to have well-insulated walls than tenant-pay rental units. In addition Davis (2010) estimates that renters are 1-10% less likely to have energy efficient light bulbs and appliances such as refrigerators, dishwashers, room air conditioners, and clothes washers than homeowners. Engineering estimates suggest that annual savings from cost effective air sealing and insulating (15%) and upgrading to Energy Star appliances such as furnaces (13%), air conditioners (10-14%), dishwashers (29%), refrigerators (15%) and clothes washers (20%) have a similar range of cost savings to those from converting from oil to gas in the first decade of the 2000’s.\(^\text{27}\)

While these numbers offer a rough approximation of the magnitude of the information problem, an added energy consumption of 1-3% due to under-investment in efficiency would have a considerable effect on residential rental energy use. As a comparison, using Reiss and White’s (2008) short-run electricity price elasticity estimates of -0.18 to -0.1, utilities would need a 10-17% short-run price increase to achieve a 1-3% reduction in energy consumption.

6 Conclusion

This paper provides and implements a framework to test for asymmetric information between landlords and tenants. When tenants lack information, landlords under-invest in energy efficiency because they cannot capitalize those investments into higher rents. In this analysis I draw on theoretical insights from the literature on search markets to make predictions about turnover rates, capitalization of energy costs into rents, and investment in cost-saving capital

\(^{27}\)For annual savings from air sealing and insulating, see EPA’s “Methodology for Estimated Energy Savings from Cost-Effective Air Sealing and Insulating,” (https://www.energystar.gov/index.cfm?c=home_sealing.hm_improvement_methodology). For savings from Energy Star appliances, see Sanchez et al. (2008) Table 5.
under symmetric and asymmetric information.

I exploit the fact that heating oil and natural gas prices have fluctuated over time, changing the relative energy costs of units that heat with oil versus units that heat with gas. I focus on the northeastern United States, where for historical reasons, many apartment units still heat with oil. This allows me to estimate the effect of a change in energy costs, while controlling for unobserved changes in the macroeconomic environment. In addition, I take advantage of the fact that in some apartments the landlord pays for energy and in some apartments the tenant pays for energy. When landlords pay for energy, the combined rent and energy payment is known to tenants upfront. As a result, market outcomes when landlords pay for energy can serve as a well-informed baseline to compare with market outcomes when tenants pay for energy.

I find turnover, capitalization of energy costs into rents, and investments in converting from oil to gas differ between the landlord and tenant-pay regimes in ways consistent with asymmetric information. I find that as the price of oil rose relative to that of natural gas from 2005-2009, close to 47,000 units in the northeast census region did not convert due to asymmetric information. The foregone savings from these units were as high as $350 per unit per year or 24% of household heating fuel costs. Overall, heating fuel costs were 2% higher for tenant-pay oil homes than they would have been absent asymmetric information.

These estimates are proportionate to the under-investment and lost saving projections of many other major efficiency investments due to asymmetric information, suggesting that lack information over energy costs could have a substantial effect on residential rental energy use. Correcting asymmetric information would reduce energy use roughly 1-3%, an effect equivalent to a short-run electricity price increase of 11-20%.

The energy efficiency gap has been recognized in the theoretical and policy literature for over 30 years. While there are multiple hypotheses as to why we might see this gap, few have been tested empirically. This paper provides some of the first empirical evidence on one of the pathways for the energy efficiency gap using a causal framework. It is particularly
important to identify market failures that distort energy efficient investment in today’s policy environment where governments are spending billions of dollars a year on energy efficiency.

The existence of asymmetric information between landlords and tenants has important policy implications. Programs that provide information to tenants such as energy audit and disclosure requirements, may be used to help alleviate information asymmetries. In addition, energy efficiency standards or energy efficiency subsidies for rental housing might be a cost effective way to address the under-investment problem. Asymmetric information also has implications for policymakers trying to address both energy externalities and under-investment in efficiency, since it suggests that price signals from carbon policies such as cap-and-trade programs may not induce efficient levels of investment energy efficiency in rental markets where tenants pay for energy. The optimal energy tax may be below marginal damages coupled with higher subsidies than under full information.
References

Congressional Budget Office (2/13/2009), House Committee on Appropriations.

Tables

Table 1: Covariate Comparison Between Payment Regimes

<table>
<thead>
<tr>
<th></th>
<th>Tenant Pays Energy</th>
<th>Landlord Pays Energy</th>
<th>P-value of Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>bedrooms</td>
<td>2.316</td>
<td>1.566</td>
<td>0.00***</td>
</tr>
<tr>
<td>rooms</td>
<td>4.945</td>
<td>3.725</td>
<td>0.00***</td>
</tr>
<tr>
<td>half baths</td>
<td>0.184</td>
<td>0.070</td>
<td>0.00***</td>
</tr>
<tr>
<td>bathrooms</td>
<td>1.140</td>
<td>1.020</td>
<td>0.00***</td>
</tr>
<tr>
<td>units in building</td>
<td>6.240</td>
<td>37.168</td>
<td>0.00***</td>
</tr>
<tr>
<td>degree day scale</td>
<td>2.301</td>
<td>2.431</td>
<td>0.00***</td>
</tr>
<tr>
<td>clothes dryer</td>
<td>0.469</td>
<td>0.151</td>
<td>0.00***</td>
</tr>
<tr>
<td>dishwasher</td>
<td>0.288</td>
<td>0.191</td>
<td>0.00***</td>
</tr>
<tr>
<td>decade built</td>
<td>1944</td>
<td>1945</td>
<td>0.03**</td>
</tr>
<tr>
<td>room air</td>
<td>0.463</td>
<td>0.516</td>
<td>0.00***</td>
</tr>
<tr>
<td>central air</td>
<td>0.165</td>
<td>0.100</td>
<td>0.00***</td>
</tr>
<tr>
<td>moderate conditions</td>
<td>0.065</td>
<td>0.065</td>
<td>0.95</td>
</tr>
<tr>
<td>bad conditions</td>
<td>0.030</td>
<td>0.080</td>
<td>0.00***</td>
</tr>
<tr>
<td>real income ($)</td>
<td>53,081</td>
<td>45,022</td>
<td>0.00***</td>
</tr>
<tr>
<td>Observations</td>
<td>3311</td>
<td>2852</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Data are from the American Housing Survey for the Northeast Census Region, years 1985-2009. An observation is an apartment unit. The payment regime and heating fuel status were assigned as the most commonly observed status for that unit. All dollar amounts are inflated to 2014 dollars.
<table>
<thead>
<tr>
<th>Dep Var: Turnover</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel price</td>
<td>-0.00862</td>
<td>-0.00361</td>
<td>-0.00495</td>
</tr>
<tr>
<td></td>
<td>(0.00567)</td>
<td>(0.00631)</td>
<td>(0.00667)</td>
</tr>
<tr>
<td>fuel price × I_{tpay}</td>
<td>0.0215**</td>
<td>0.0246**</td>
<td>0.0307***</td>
</tr>
<tr>
<td></td>
<td>(0.00924)</td>
<td>(0.0103)</td>
<td>(0.0109)</td>
</tr>
<tr>
<td>I_{oil}</td>
<td>-0.0589***</td>
<td>-0.0467*</td>
<td>-0.0378</td>
</tr>
<tr>
<td></td>
<td>(0.0155)</td>
<td>(0.0277)</td>
<td>(0.0282)</td>
</tr>
<tr>
<td>I_{tpay}×I_{oil}</td>
<td>0.0117</td>
<td>0.0376</td>
<td>0.0474</td>
</tr>
<tr>
<td></td>
<td>(0.0220)</td>
<td>(0.0302)</td>
<td>(0.0313)</td>
</tr>
</tbody>
</table>

Covariates: Yes Yes No
Payment Regime × Year FE: Yes Yes Yes
Decade Built × Year FE: Yes Yes Yes
Unit FE: No Yes Yes
Covariates × Year FE: No No Yes
N: 13273 13273 13273

Notes: The unit of observation is apartment unit × year. Fuel price is the retail price of home heating oil or natural gas ($/MMBTU) for the Northeast Census region. The dependent variable is a binary variable indicating unit turnover. All prices are inflated to 2014 dollars. All specifications include payment regime by year indicator and decade built indicator by year indicator flexible trends. Standard errors are in parentheses and clustered at unit level. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels.
Table 3: Estimation of the Effect of Fuel Prices on Rent

<table>
<thead>
<tr>
<th>Dep Var: Monthly Rent</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel price</td>
<td>6.200**</td>
<td>6.465**</td>
<td>7.951***</td>
</tr>
<tr>
<td></td>
<td>(2.880)</td>
<td>(3.134)</td>
<td>(3.075)</td>
</tr>
<tr>
<td>fuel price × I_{tpay}</td>
<td>-6.468</td>
<td>-7.377</td>
<td>-5.719</td>
</tr>
<tr>
<td></td>
<td>(4.332)</td>
<td>(5.524)</td>
<td>(4.513)</td>
</tr>
<tr>
<td>I_{oil}</td>
<td>-23.71**</td>
<td>-27.79**</td>
<td>-16.43</td>
</tr>
<tr>
<td></td>
<td>(11.99)</td>
<td>(12.51)</td>
<td>(11.98)</td>
</tr>
<tr>
<td>I_{tpay} × I_{oil}</td>
<td>-11.07</td>
<td>-14.12</td>
<td>-11.13</td>
</tr>
<tr>
<td></td>
<td>(12.58)</td>
<td>(13.75)</td>
<td>(12.76)</td>
</tr>
</tbody>
</table>

Covariates	Yes	Yes	No	
	Payment Regime x Year FE	Yes	Yes	Yes
	Decade Built x Year FE	Yes	Yes	Yes
	Unit FE	Yes	Yes	Yes
	Urban Only	No	Yes	No
	Covariates x Year FE	No	No	Yes
N	22266	19546	22266	

Notes: The unit of observation is apartment unit x year. Fuel price is the retail price of home heating oil or natural gas ($/MMBTU) for the Northeast Census region. The dependent variable is monthly rent. All prices are inflated to 2014 dollars. All specifications include payment regime by year indicator and decade built indicator by year indicator flexible trends. Standard errors are in parentheses and clustered at unit level. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels.
Table 4: Estimation of the Effect of Relative Fuel Prices on the Relative Probability of Converting From Oil to Gas

<table>
<thead>
<tr>
<th></th>
<th>Convert to gas</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>(I_{t-1} \times (p_{oil} - p_{gas}))</td>
<td>0.0118***</td>
<td>0.0104***</td>
<td>0.0111**</td>
</tr>
<tr>
<td></td>
<td>(0.00389)</td>
<td>(0.00386)</td>
<td>(0.00522)</td>
</tr>
<tr>
<td>(I_{t-1})</td>
<td>0.00468</td>
<td>-0.0225**</td>
<td>-0.0148</td>
</tr>
<tr>
<td></td>
<td>(0.00840)</td>
<td>(0.0107)</td>
<td>(0.0107)</td>
</tr>
<tr>
<td>Covariates</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Decade Built x Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Covariates x Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>5177</td>
<td>5177</td>
<td>5177</td>
</tr>
</tbody>
</table>

Notes: The sample is limited to those observed 4+ times, which is about 38% of the units in the sample (1047 units, 5177 observations). The sample only includes oil homes that have either switched fuel types once or never. Once a unit switches to gas, subsequent observations are removed for that unit. The unit of observation is apartment unit x year. \(p_{oil} \) is the retail price of home heating oil ($/MMBTU), \(p_{gas} \) the retail price of natural gas ($/MMBTU) for the Northeast Census region. All prices are inflated to 2014 dollars. All specifications include decade built indicator by year indicator flexible trends. Standard errors are in parentheses and clustered at unit level. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels.

Table 5: Estimates of the Effects of Asymmetric Information on Conversion from Oil to Gas and Energy Expenditure

<table>
<thead>
<tr>
<th>Year</th>
<th>(p_{oil} - p_{gas})</th>
<th>Tenant-Pay Oil Units</th>
<th>(q - q')</th>
<th>Bi-annual Savings</th>
<th>Savings as % of Oil Expenditure</th>
<th>Lost Savings as % of Tenant-Pay Oil Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>$1.43</td>
<td>546,000</td>
<td>7,800</td>
<td>$300</td>
<td>12%</td>
<td>0.2%</td>
</tr>
<tr>
<td>2007</td>
<td>$4.28</td>
<td>518,000</td>
<td>29,979</td>
<td>$706</td>
<td>24%</td>
<td>1.4%</td>
</tr>
<tr>
<td>2009</td>
<td>$3.24</td>
<td>523,000</td>
<td>46,917</td>
<td>$596</td>
<td>21%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Notes: All prices and savings are inflated to 2014 dollars.
Figures

Figure 1: Notes: This is a conceptual diagram of the relationship between energy cost and housing cost. \(R \) indicates the combined housing costs of rent, \(r \) and energy cost, \(\mu \). \(R = r_{\text{lpay}} \) in the landlord-pay regime and \(R = r_{\text{tpay}} + \mu \) in the tenant-pay regime. Star superscripts indicate equilibria under full information and “ASY” superscripts indicate equilibria under asymmetric information.
Figure 2: Notes: Data are from the American Housing Survey for the Northeast Census Region, years 1985-2009. An observation is an apartment unit. The payment regime and heating fuel status were assigned as the most commonly observed status for that unit.
Figure 3: Notes: The prices are the consumption weighted average retail prices ($/MMBTU) for the states in the Northeast Census region. All prices are inflated to 2014 dollars.
A1 Appendix

A1.1 A Search Model for Residential Rental Housing

In what follows I derive a search model for rental housing with endogenous separation. I make several assumptions in order to simplify the exposition and tractability of the model. I assume that housing units are of homogeneous quality and that payment regime and energy costs are uncorrelated with other unit characteristics. However, these assumptions are not required for the predicted market outcomes, nor for the empirical analysis. In fact, I relax these assumptions in the empirical analysis.

For simplicity, assume a housing stock of homogeneous quality where units cost the same to construct and maintain but vary idiosyncratically in their characteristics. Some units may have two large bedrooms and others three small ones, or one might have a built-in entertainment system, and another a luxury kitchen. In addition, each unit has an energy cost. Suppose energy costs are independently and identically distributed over characteristic space from a known distribution. Each tenant has idiosyncratic match quality parameters that they discover when they visit a unit. Their reservation rent for a unit is a function of the match quality and the known rent and energy cost distribution. Landlords post take-it-or-leave-it rent offers that they choose to maximize profit with knowledge of the distribution of posted rents, energy costs, and reservation rents.\footnote{Both landlords and tenants can get a good sense of the distribution of rents in an area from market listings. Landlords have experience with renting their unit and an awareness of the likelihood that they will be able to find a tenant as a function of rent.}

In some known fraction of the units the landlord is responsible for the energy cost and in the remainder the tenants are responsible. Let the payment regime be uncorrelated with the other exogenous unit characteristics so that they are each IDD in characteristic space. As a result, match quality will be uncorrelated with the payment regime as well as energy payment. Further, assume that fuel prices follow a random walk, so that for both landlords and tenants, the best prediction of future energy prices are contemporaneous energy prices.\footnote{Our best understanding of consumers’ expectations about future fuel prices are that they follow a random walk (Anderson et al. 2012)}
Therefore, the best prediction of the future monthly energy payments for an apartment unit are its energy costs today.

A1.2 Matching

Suppose that at some given time, there are \(v \) vacancies posted by landlords and \(u \) unmatched tenants looking for housing. Let \(m = m(u,v) \), a continuous, non-negative function that is increasing and concave in \(v \) and \(u \), represent the matching technology that gives a flow of potential contracts between landlords and tenants. The arrival rates of matching opportunities for tenants \((\alpha_t)\) and landlords \((\alpha_l)\) are as follows:

\[
\alpha_t = \frac{m(u,v)}{u} \quad \text{and} \quad \alpha_l = \frac{m(u,v)}{v}
\]

Assuming that \(m \) exhibits constant returns to scale, \(\alpha_t \) and \(\alpha_l \) will depend only on the number of vacant apartment units per prospective tenant \((v/u)\), or the “tightness of the market.”

A1.3 The Tenant’s Problem

Suppose that tenants have identical income and only differ idiosyncratically in their preference for housing characteristics, or match quality. They have a linearly separable utility function in housing so that the instantaneous utility that they get from housing can be described by the following:

\[
V(R) = y - R + \theta
\]

where \(V(R) \) is the instantaneous indirect utility flow from housing as a function of the unit rent \(R \), \(y \) is income, and \(\theta \sim \mathcal{N}(0, \sigma) \) is a normally distributed idiosyncratic taste parameter, with mean zero and variance \(\sigma \), known as the “match quality,” and with cumulative distribution function \(\Phi(\theta) \). The instantaneous search costs are \(c \) and include the costs of temporary
accommodation, so that the instantaneous utility from not having a rental contract is:

\[U(c) = y - c \]

Transitions out of apartment units will be modeled by allowing households to reconsider their contract if their preferences change. Suppose preferences change according to a Poisson process with parameter, \(\lambda \), at which point the match quality parameter, \(\theta \), changes to \(\theta' \) for a given household. This can be thought of as changing preferences of households over time caused by exogenous events such as a child being born or going off to college. The new match quality parameter is an independent draw from the match quality distribution so that \(\Phi(\theta'|\theta) = \Phi(\theta') \).

The tenant determines a reservation rent, \(R^*(\theta) \), the maximum amount they would be willing to pay for a unit accounting for match quality so that the value of being housed at the reservation rent is equal to the value of temporary housing. Let \(R \) be the total rent level paid inclusive of the energy cost. If \(r \) is the listed rent price, then the total rent payment will be \(R = r + \mu \) for units where tenants pay the energy costs and \(R = r \) otherwise. A tenant is indifferent between two otherwise identical units independent of the payment regime or fuel type as long as the total rent payment, \(R \), is the same.

If \(V(y, R, \theta) \) is the payoff from agreeing to pay total rent level \(R \) with match quality \(\theta \) and income \(y \), \(\tau \) is the discount rate, and \(U(y) \) is the value of being “unmatched” or living in temporary housing, then the value of having a rental contract is described by the following continuous-time Bellman equation:

\[U(c) = y - c \]

\[\Phi(\theta'|\theta) = \Phi(\theta') \]

\[\text{Contracts are often made for a fixed time period such as a year, especially at the beginning of a tenancy. Contracts can usually be broken at a fixed cost if a tenant’s circumstances change. \(\lambda \) gives the instantaneous probability that tenants might reconsider their contract. This gives a tractable way to assess turnover, but the predictions of the model do not hinge on the somewhat unrealistic assumption that tenants may choose to leave during any point of the contract. This setup means that tenants’ decisions to leave apartment units will be largely driven by the new exogenous draw on match quality and will allow me to explore the incremental effect of energy cost information shocks on turnover.} \]
\[\tau V(y, R, \theta) = y - R + \theta + \lambda \int_\theta \left[\int_{-\infty}^{\infty} \max\{V(y, R, \theta') - V(y, R, \theta), U(y) - V(y, R, \theta)\} \, dF(R) \right] \, d\Phi(\theta) \quad (A1) \]

where \(F(R) \) is the cumulative distribution function (cdf) of rental amounts. This equation says that the permanent value of having a rental contract (instantaneous flow: \(\tau V(y, R, \theta) \)) is the instantaneous utility from renting, \(y - R + \theta \), plus the change in utility from revisiting the contract, which happens with probability \(\lambda \). If tenants stay after their preferences change, they earn the difference in value between their previous match quality and the current match quality, \(V(y, R, \theta') - V(y, R, \theta) \). If they go, they incur \(U(y) - V(y, R, \theta) \), or the opportunity cost of being in temporary housing. Tenants will choose whether to stay or go, depending on which option gives them higher utility. Integrating over the cdf of accepted rents \(F(R) \) and the cdf of match quality parameters \(\Phi(\theta) \) gives the expected value of revisiting the contract.

The permanent value of temporary housing \(\tau U(y) \) follows the continuous-time Bellman equation:

\[\tau U(y) = y - c + \alpha t \int_\theta \left[\int_{-\infty}^{\infty} \max\{V(y, R, \theta) - U(y), 0\} \, dF(R) \right] \, d\Phi(\theta) \quad (A2) \]

The value of temporary housing is the instantaneous utility from that state, \(y - c \), plus the probability \(\alpha t \) that a searching tenant views a randomly chosen apartment times the expected benefit of renting relative to temporary housing, \(V(y, R, \theta) - U(y) \). Again here, integrating over the cdf of accepted rents, \(F(R) \), and the cdf of match quality parameters, \(\Phi(\theta) \), gives the expected value of an opportunity to make a contract.

The two continuous time Bellman equations can be combined by solving for the value of renting, \(V(y, R, \theta) \), in terms of \(U(y) \) using equation 1 and plugging that expression into equation 2. Combined with the fact that the value of being housed at the reservation rent is equal to the value of temporary housing, \(V(y, R^*(\theta), \theta) = U(y) \), at the optimum, we get the following expression for reservation rent.\(^{31}\)

\(^{31}\) Compared to a more basic model where contracts are not revisited, the rate of renewal opportunities, \(\lambda \),
\[R^*(\theta) = \theta + c + \frac{\lambda - \alpha_t}{\tau + \lambda} \int_\theta^{R^*(\theta)} (R^*(\theta) - R) \, dF(R) \, d\Phi(\theta) \] (A3)

A1.4 The Landlord’s Problem

Landlords have two possible states for their units: (1) having a tenant paying rent, \(r \), (2) on the market and searching for a tenant. The payoffs from these states are \(r \) if the unit is occupied, and zero if it is not. Landlords set rents to maximize profit from being on the market, trading off higher rent and the probability of vacancy. We assume that they know the distributions of offered rents, energy costs, and the match quality parameter. Tenants rent apartment units based on their preferences over the attributes of the unit and the combined rent and energy cost payment. Under the landlord-pay regime, tenants will always be fully informed about combined rent and energy payment at lease-signing. Under the tenant-pay regime, tenants may or may not have information about their energy costs at lease-signing. Therefore, there are three cases of interest in my analysis: (Case 1) landlords pay for energy, (Case 2) tenants pay for energy and have full information about energy costs, and (Case 3) tenants pay for energy and have no information about energy costs.32

Case 1: Landlords pay for energy

For a landlord who pays energy costs, the continuous time Bellman equation for the value of being vacant and looking for a tenant is as follows:

\[\tau W_0(r) = \max_{\tau} \{ P(r) \alpha_t (W_1(r) - W_0(r)) \} \] (A4)

affects \(R^*(\theta) \) by changing the effective discount rate from \(\tau \) to \(\tau + \lambda \). The opportunity to revisit the contract means that tenants can go through periods of being in temporary housing, reducing the value of the future. In addition, if \(\lambda < \alpha_t \), then \(R^*(\theta) > c \), meaning tenants might be willing to rent in a unit that costs more than \(c \) for the reduced search cost when their match quality parameter changes, rather than searching while in temporary housing.

32This model assumes that the payment regime is pre-determined for the landlord. In my empirical analysis, I carefully consider that landlords might switch payment regimes and its effects.
where τ is the discount rate and τW_0 is the flow (per period) value of being vacant, $W_1(r)$ is the value of a contract at posted rent level r, α_t is the arrival rate of prospective tenants, and $P(r)$ is the probability of renting as a function of posted rent. The probability of renting is a function of the distribution of the match quality parameter and reservation rents, $R^*(\theta)$. $\tau W_0(r)$ equals the sum of the instantaneous payoff from being in that state, 0, plus the expected value of any changes to that state, $P(r)\alpha_t(W_1(r) - W_0(r))$. $P(r)\alpha_t$ is the instantaneous probability of renting and $W_1(r) - W_0(r)$ is the change in value from acquiring a tenant.

The value of a contract at rent r can be described by the following continuous time Bellman equation:

$$\tau W_1(r) = r - \mu + \lambda [(1 - P(r))(W_0 - W_1(r))]$$ \hspace{1cm} (A5)

The flow of the value of renting, $\tau W_1(r)$, is the instantaneous payoff from having a tenant (rent level, r, minus the energy payment, μ) plus the expected value of losing the tenant. λ is the probability that a tenant’s preferences will change and the contract will be revisited, $1 - P(r)$, is the probability that the tenant will decide to leave, so $\lambda(1 - P(r))$ is the instantaneous probability that the landlord will no longer have a tenant. $W_0 - W_1(r)$ is the change in value from losing the tenant. Note that when landlords pay the energy costs, the energy cost parameter, μ, enters through the revenue component of the maximization.

Combining the two Bellman equations and solving for r^* to maximize profits from having a rental unit on the market yields the following.\[^{33}\]

\[^{33}\]Compared with a simple one period model, where $r^* = \frac{P(r)}{P'(r)}$, the landlord will charge higher rents in a dynamic model. The higher the discount factor and the higher the probability that the tenant will revisit the contract, the higher the rent, since they both lower the value of having a tenant in the future relative to being vacant now.
\[r^* = \frac{P(r)}{P'(r) \left(1 + \frac{P(r)(\alpha - \lambda)}{\tau + \lambda + P(r)(\alpha - \lambda)} \right)} - \mu \]

(A6)

Case 2: Fully informed tenants pay for energy

When tenants pay for the energy costs, \(\mu \) enters the landlord’s maximization by reducing the probability of renting the unit for a given listed rent, \(r \). The corresponding Bellman and maximizing rent equations are as follows.

\[\tau W_0 = \max_{r} \{ P(r + \mu)\alpha_t(W_1(r) - W_0) \} \]

(A7)

\[\tau W_1(r) = r + \lambda [(1 - P(r + \mu))(W_0 - W_1(r))] \]

(A8)

\[r^* = \frac{P(r + \mu)}{P'(r + \mu) \left(1 + \frac{P(r + \mu)(\alpha - \lambda)}{\tau + \lambda + P(r + \mu)(\alpha - \lambda)} \right)} \]

(A9)

Case 3: Uninformed tenants pay for energy

The value of renting at posted rent \(r \), \(W_1(r) \), is unchanged from the full information case (equation A5) if tenants lack information. If the contract is revisited, the tenants will know the true energy costs because they have been living there and making payments. New tenants will be uninformed about the true energy payment. For simplicity, I will assume that when tenants lack information, they will match with a unit based on the expected energy payment \(\bar{\mu} = E[\mu] \) rather than the true energy payment.\(^{34}\) The difference in the maximization problem for landlords is that the lack of information increases the value of having the unit on the market, \(W_0 \), for high energy cost units and decreases \(W_0 \) for low

\(^{34}\)Another way to model asymmetric information about fuel costs, which would yield similar predictions in my empirical context, would be to assume that tenants do know whether they heat with oil or gas, but they are not aware of how the prices move relative to each other over time.
energy cost units. The change in the value of \(W_0 \) changes landlords’ incentives and affects the three market outcomes of interest when tenants pay for energy. The Bellman and rent maximizing equations are as follows when tenants lack information.

\[
\tau W_0 = \max_r \{ P(r + \bar{\mu}) \alpha_l (W_1(r) - W_0) \} \tag{A10}
\]

\[
\tau W_1(r) = r + \lambda [(1 - P(r + \mu))(W_0(r) - W_1(r))] \tag{A11}
\]

\[
\tau^{asy} = \frac{P(r + \mu)}{P'(r + \bar{\mu}) + \frac{P(r + \mu)(\alpha_l P'(r + \bar{\mu}) - \lambda P'(r + \mu))}{\tau + \lambda (1 - P(r + \mu)) + \alpha_l P'(r + \bar{\mu})}} \tag{A12}
\]

A1.5 Incidence of Energy Costs

A1.5.1 Full Information

For any given functional form of \(P(r) \), the incidence of the energy payment would be the same under both payment regimes, similar to a tax. In other words, \(r_{lpay} = r_{tpay} + \mu \), where the subscripts \(lpay \) and \(tpay \) indicate landlord-pay and tenant-pay respectively.

A1.5.2 Asymmetric Information

The incidence of the energy costs will no longer be the same under both payment regimes if there are information asymmetries. When landlords pay for energy, they know energy costs, which enter their maximization through the cost of renting. Tenants’ information status does not affect landlords’ maximization since tenants will always be fully informed about their combined rent and energy payment at lease-signing in the landlord-pay regime. In this sense, the landlord-pay regime can serve as a full information counterfactual for outcomes in the tenant-pay regime. If tenants’ are uninformed, the incidence of the energy payment will be higher for them in the tenant-pay regime, where, because they do not know the combined rent and energy payment upfront, they are less elastic to energy costs. Landlords
in the tenant-pay regime will post higher rents for high cost units and lower rents for low cost units relative to the full information case. Even after tenants learn the true fuel costs of an apartment unit, they will still overpay for higher cost units relative to the symmetric information case because landlords can charge the next uninformed tenant more.

A1.6 Unit Turnover

A1.6.1 Full Information

The probability of unit turnover is the probability that the contract will be revisited times the probability that the tenant will not renew, \(\lambda(1 - P(r^*_{tpay})) = \lambda(1 - P(r^*_{tpay} + \mu)) \). If the housing cost inclusive of the energy payment is the same in both payment regimes, the likelihood that a unit will turn over will also be the same.

A1.6.2 Asymmetric Information

Under asymmetric information, high energy cost units will be more likely than low energy cost units to turn over when tenants pay for energy than when landlords pay. Since the total payments for high cost tenant-pay units, are higher under the asymmetric information case than the full information case, the returning tenant is less likely to remain a match after their preferences change. Conversely, the total payments for low cost tenant-pay units are lower when tenants pay for energy and lack information than when they have full information, so returning tenants are more likely to remain a match when the contract is up. Under asymmetric information:

High Energy Cost Units : \(r^*_{tpay} < r^{asy}_{tpay} + \mu \implies \lambda(1 - P(r^*_{tpay})) < \lambda(1 - P(r^{asy}_{tpay} + \mu)) \)
Low Energy Cost Units: \(r_{lpay}^* > r_{tpay}^{asy} + \mu \implies \lambda(1 - P(r_{lpay}^*)) > \lambda(1 - P(r_{tpay}^{asy} + \mu)) \)

A1.7 Investment In Converting Fuel Type

A1.7.1 Full Information

Landlords will convert from oil to gas if the premium from having a gas unit on the market as opposed to an oil unit exceeds the upfront capital costs of investment, \(K \):

\[
W_{gas 0}^* - W_{oil 0}^* > K
\]

Assume for simplicity that \(K \) is the same for all units and is not changing over time. Again, since the incidence of the energy costs is the same irrespective of which party pays, there should be no difference in converting from oil to gas rates between the two payment regimes.

A1.7.2 Asymmetric Information

Suppose gas is less expensive than oil. When tenants lack information in the tenant-pay regime, the premium from having a vacant gas unit on the market, \(W_{gas 0}^* - W_{oil 0}^* \), is reduced and landlords are less likely to invest in switching from oil to gas:

\[
W_{gas 0,lpay}^* - W_{oil 0,lpay}^* > W_{gas 0,tpay}^* - W_{oil 0,tpay}^*
\]

A2 Data Cleaning

I take several steps to reduce the noise from errors in the sample and fill in information for vacant units. First, for the time invariant features of the apartment, including number of rooms, bedrooms, bathrooms, year built, number of units in the building, degree day zone
and urbanization indicator, I replaced all entries with the most commonly observed value for the unit. Second, I recoded lone observations of a heating fuel type. If, for example, the heating fuel for a particular unit is listed as gas one year but is oil in the previous and following surveys, it is recoded as oil. Switching primary fuel type is time consuming and often requires a large upfront investment. It is therefore unlikely that a unit will convert heating fuels multiple times in a short period. Last, for vacant units, I replaced the missing values for payment regime with the value from the previous survey where the information was recorded.

I then further limited the sample in several ways order to focus the analysis on units with oil and natural gas as primary heating fuels. First, I dropped housing units if the majority of observations listed a primary heating fuel other than oil or gas. Second, in order to eliminate units that use multiple fuels for heat, I dropped units if they switch primary heating fuels more than once or if oil is listed as a primary heating fuel and natural gas as a secondary heating fuel or vice versa. In some cases there is missing information on which party pays for the heating fuel. I also dropped housing units if the payment type was missing or did not match the heating fuel (either oil or gas) for a majority of that unit’s observations. This results in dropping 36% of the remaining sample (15,304 observations), mostly due to the fact that the primary heating fuel was electricity rather than heating oil or natural gas.

A3 Robustness Checks of Sample Restrictions for Conversion from Oil to Gas Estimations

Table A1 displays the results from estimations with variations on how I trim the sample for conversion from oil to natural gas. I still require that a unit only converts heating fuel once, as it would be highly unlikely that a building owner would make the investment to convert heating fuels more than once in a 20 year period and would be much more likely to be measurement or survey error. For the estimate in the first two column, I restrict
the sample to units I observe only three or more times rather than four or more times. In column 2, I restrict the sample to units I observe five or more times. The point estimates on the coefficient of interest $I^{\text{pay}} \times (p^{\text{oil}} - p^{\text{gas}})$ are very similar to the initial estimates in Table 4. Therefore, my results are not highly sensitive to the exact criteria that I choose to define the sample.
Appendix Tables

Table A1: Estimation of the Effect of Relative Fuel Prices on the Relative Probability of Converting From Oil to Gas

<table>
<thead>
<tr>
<th>Dep Var: Convert to gas</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{t-1}^{lpay} \times (p_{oil} - p_{gas})$</td>
<td>0.00721*</td>
<td>0.00915**</td>
</tr>
<tr>
<td></td>
<td>(0.00388)</td>
<td>(0.00401)</td>
</tr>
<tr>
<td>I_{t-1}^{lpay}</td>
<td>-0.0240**</td>
<td>-0.0240**</td>
</tr>
<tr>
<td></td>
<td>(0.0108)</td>
<td>(0.0110)</td>
</tr>
<tr>
<td>Covariates</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Decade BuiltxYear FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>5885</td>
<td>4656</td>
</tr>
</tbody>
</table>

Notes: In column 1 the sample is limited to units observed 3+ times, which is about 52% of the units in the sample (1431 units, 5885 observations). In column 1 the sample is limited to units observed 5+ times, which is about 31% of the units in the sample (849 units, 4656 observations). The sample only includes oil homes that have either switched fuel types once or never. Once a unit switches to gas, subsequent observations are removed for that unit. The unit of observation is apartment unit × year. p_{oil} is the retail price of home heating oil ($/MMBTU), p_{gas} the retail price of natural gas ($/MMBTU) for the Northeast Census region. All prices are inflated to 2014 dollars. All specifications include decade built indicator by year indicator flexible trends. Standard errors are clustered at unit level. ***, ** and * denote statistical significance at the 1, 5 and 10 percent levels.